高考总复习:知识讲解_直线的点斜式与两点式_提高
《高考总复习:知识讲解_直线的点斜式与两点式_提高》由会员分享,可在线阅读,更多相关《高考总复习:知识讲解_直线的点斜式与两点式_提高(9页珍藏版)》请在七七文库上搜索。
1、直线的点斜式与两点式方程编稿:丁会敏 审稿:王静伟 【学习目标】(1)掌握直线方程的点斜式,并在此基础上掌握直线方程的斜截式、两点式、截距式;(2)能根据直线满足的几何条件,选择恰当的方程形式,求直线方程。【要点梳理】要点一:直线的点斜式方程方程由直线上一定点及其斜率决定,我们把叫做直线的点斜式方程,简称点斜式.要点诠释: 1.点斜式方程是由直线上一点和斜率确定的,点斜式的前提是直线的斜率存在.点斜式不能表示平行于y轴的直线,即斜率不存在的直线;2.当直线的倾斜角为0时,直线方程为;3.当直线倾斜角为90时,直线没有斜率,它的方程不能用点斜式表示.这时直线方程为:.4.表示直线去掉一个点;表示
2、一条直线.要点二:直线的斜截式方程如果直线的斜率为,且与轴的交点为,根据直线的点斜式方程可得,即.我们把直线与轴的交点的纵坐标叫做直线在轴上的截距,方程由直线的斜率与它在轴上的截距确定,所以方程叫做直线的斜截式方程,简称斜截式.要点诠释:1.b为直线在y轴上截距,截距可以取一切实数,即可以为正数、零、负数;距离必须大于或等于零;2.斜截式方程可由过点(0,b)的点斜式方程得到;3.当时,斜截式方程就是一次函数的表示形式.4.斜截式的前提是直线的斜率存在.斜截式不能表示平行于y轴的直线,即斜率不存在的直线.5.斜截式是点斜式的特殊情况,在方程中,是直线的斜率,是直线在轴上的截距.要点三:直线的两
3、点式方程经过两点(其中)的直线方程为,称这个方程为直线的两点式方程,简称两点式.要点诠释:1.这个方程由直线上两点确定;2.当直线没有斜率()或斜率为时,不能用两点式求出它的方程. 3.直线方程的表示与选择的顺序无关.4在应用两点式求直线方程时,往往把分式形式通过交叉相乘转化为整式形式,从而得到的方程中,包含了x1=x2或y1=y2的情况,但此转化过程不是一个等价的转化过程,不能因此忽略由x1、x2和y1、y2是否相等引起的讨论要避免讨论,可直接假设两点式的整式形式要点四:直线的截距式方程若直线与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中,则过AB两点的直线方程为,这个方程称为
4、直线的截距式方程.a叫做直线在x轴上的截距,b叫做直线在y轴上的截距.要点诠释:1.截距式的条件是,即截距式方程不能表示过原点的直线以及不能表示与坐标轴平行的直线.2.求直线在坐标轴上的截距的方法:令x=0得直线在y轴上的截距;令y= 0得直线在x轴上的截距.要点五:中点坐标公式若两点P1(x1,y1)、P2(x2,y2),且线段的中点坐标为(x,y),则x=,y=,则此公式为线段的中点坐标公式要点六:直线方程几种表达方式的选取在一般情况下,使用斜截式比较方便,这是因为斜截式只需要两个独立变数,而点斜式需要三个独立变数在求直线方程时,要根据给出的条件采用适当的形式一般地,已知一点的坐标,求过这
5、点的直线,通常采用点斜式,再由其他条件确定斜率;已知直线的斜率,常用斜截式,再由其他条件确定在y 轴上的截距;已知截距或两点选择截距式或两点式从结论上看,若求直线与坐标轴所围成的三角形的面积或周长,则选择截距式求解较方便,但不论选用哪一种形式,都要注意各自的限制条件,以免遗漏【典型例题】类型一:点斜式直线方程例1已知直线过点(1,0),且与直线的夹角为30,求直线的方程。【答案】x=1或【解析】 直线的斜率为,其倾斜角为,且过点(1,0)。又直线与直线的夹角为30,且过点(1,0),由下图可知,直线的倾斜角为30或90。故直线的方程为x=1或。【点评】(1)由于直线过点(1,0),因此求直线的
6、方程的关键在于求出它的斜率,由此可知,何时选择点斜式来求直线方程的依据是题目是否给出了(或者能够求出)直线上的一点的坐标和其斜率。(2)利用点斜式求直线方程的步骤是:判断斜率k是否存在,并求出存在时的斜率;在直线上找一点,并求出其坐标。(3)要注意点斜式直线方程的逆向运用,即由方程yy0=k(xx0)可知该直线过定点P(x0,y0)且斜率为k。举一反三:【变式1】(1)直线y=x+1绕着其上一点P(3,4)逆时针旋转90后得直线,求直线的点斜式方程;(2)直线过点P(2,3),且与过点M(1,2),N(5,2)的直线垂直,求直线的方程【答案】(1)x+y7=0(2)x=2 【解析】(1)直线y
7、=x+1的斜率k=1,所以倾斜角为45由题意知,直线的倾斜角为135,所以直线的斜率k=tan135=1 又点P(3,4)在直线上,由点斜式方程知,直线的方程为y4=(x3),即x+y7=0 (2)直线MN的斜率,所以该直线平行于x轴 又直线垂直于直线MN,因此直线的倾斜角为90,又直线过点P(2,3),所以直线的方程为x2=0,即x=2 【点评】用点斜式求直线方程,首先要确定一个点的坐标,其次判断斜率是否存在,只有在斜率存在的条件下,才能用点斜式求直线的方程【变式2】 直线过点P(l,2),斜率为,把绕点P按顺时针方向旋转30得直线,求直线和的方程【答案】 【解析】 的方程可以由点斜式直接写
8、出,经过点P,因此,关键是求出k2,利用数形结合的方法,找出的倾斜角是关键 直线的方程是 , 如图,绕点P按顺时针方向旋转30,得到直线的倾斜角为,的方程为【点评】 本例中,通过画图分析,得到两条直线的倾斜角之间的关系,再利用的斜率已知,从而求出它的倾斜角,进而求出的倾斜角、斜率因此我们要善于利用数形结合的方法来分析条件之间的关系,从而找到解题的切入点类型二:斜截式直线方程例2(1)写出斜率为1,在y轴上截距为2的直线方程的斜截式; (2)求过点A(6,4),斜率为的直线方程的斜截式;(3)已知直线方程为2x+y1=0,求直线的斜率、在y轴上的截距以及与y轴交点的坐标【答案】(1)y=x2(2
9、)(3)k=2,b=1,(0,1) 【解析】 (1)易知k=1,b=2, 由直线方程的斜截式知, 所求直线方程为y=x2 (2)由于直线的斜率,且过点A(6,4), 根据直线方程的点斜式得直线方程为, 化为斜截式为 (3)直线方程2x+y1=0,可化为y=2x+1, 由直线方程的斜截式知, 直线的斜率k=2,在y轴上的截距b=1, 直线与y轴交点的坐标为(0,1)。【点评】 (1)选用斜截式表示直线方程的依据是知道(或可以求出)直线的斜率k和直线在y轴上的截距b。(2)直线的斜截式方程的好处在于它比点斜式方程少一个参数,即斜截式方程只要两个参数k、b即可确定直线的方程,而点斜式方程则需要三个参
![高考总复习:知识讲解_直线的点斜式与两点式_提高_第1页](https://www.77wenku.com/fileroot1/2020-2/28/951ef257-d0e9-4721-bf1d-b8234e16831c/951ef257-d0e9-4721-bf1d-b8234e16831c1.gif)
![高考总复习:知识讲解_直线的点斜式与两点式_提高_第2页](https://www.77wenku.com/fileroot1/2020-2/28/951ef257-d0e9-4721-bf1d-b8234e16831c/951ef257-d0e9-4721-bf1d-b8234e16831c2.gif)
![高考总复习:知识讲解_直线的点斜式与两点式_提高_第3页](https://www.77wenku.com/fileroot1/2020-2/28/951ef257-d0e9-4721-bf1d-b8234e16831c/951ef257-d0e9-4721-bf1d-b8234e16831c3.gif)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 复习 知识 讲解 直线 点斜式 两点 提高
![提示](https://www.77wenku.com/images/bang_tan.gif)
链接地址:https://www.77wenku.com/p-123340.html