2020年中考数学必考专题14 函数综合题(原卷版)

上传人:hua****011 文档编号:122994 上传时间:2020-02-26 格式:DOCX 页数:6 大小:568.24KB
下载 相关 举报
2020年中考数学必考专题14 函数综合题(原卷版)_第1页
第1页 / 共6页
2020年中考数学必考专题14 函数综合题(原卷版)_第2页
第2页 / 共6页
2020年中考数学必考专题14 函数综合题(原卷版)_第3页
第3页 / 共6页
2020年中考数学必考专题14 函数综合题(原卷版)_第4页
第4页 / 共6页
2020年中考数学必考专题14 函数综合题(原卷版)_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、专题14 函数的综合问题 专题知识回顾 1.一次函数与二次函数的综合。2.一次函数与反比例函数的综合。3.二次函数与反比例函数的综合。4.一次函数、二次函数和反比例函数的综合。专题典型题考法及解析 【例题1】(2019黑龙江绥化)一次函数y1x+6与反比例函数y2(x0)的图象如图所示.当y1y2时,自变量x的取值范围是_.第18题图【例题2】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则的值为 【例题3】(2019广西省贵港市)如图,菱形

2、的边在轴上,点的坐标为,点在反比例函数的图象上,直线经过点,与轴交于点,连接,(1)求,的值;(2)求的面积 专题典型训练题 1.(2019广东深圳)已知函数y=ax2+bx+c(a0)的图象如图所示,则函数y=ax+b与y=的图象为( ) 2.(2019四川省雅安市) 已知函数的图像如图所示,若直线y=x+m与该图像恰有三个不同的交点,则m的取值范围为 _.3. (2019湖北仙桃)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6)动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位

3、长度的速度沿边BC向终点C运动设运动的时间为t秒,PQ2y(1)直接写出y关于t的函数解析式及t的取值范围: ;(2)当PQ35时,求t的值;(3)连接OB交PQ于点D,若双曲线y=kx(k0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由4. (2019湖南湘西)如图,一次函数ykx+b的图象与反比例函数y=mx的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB4(1)求函数y=mx和ykx+b的解析式;(2)结合图象直接写出不等式组0mxkx+b的解集5.(2019山东东营)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(2,a)、B 两

4、点,BCx 轴,垂足为 C,AOC的面积是2(1)求 m、n的值;(2)求直线 AC的解析式6.(2019湖北咸宁)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z2x+120(1)第40天,该厂生产该产品的利润是 元;(2)设第x天该厂生产该产品的利润为w元求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?在生产该产品的过程中,当天利润不低于2400元的共有多少天?7. (2019贵州省

5、毕节市)已知抛物线yax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛物线上的动点(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图1,连接OP交BC于点D,当SCPD:SBPD1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,1),点G为x轴负半轴上的一点,OGE15,连接PE,若PEG2OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由8.(2019贵州黔西南州)已知抛物线yax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛

6、物线上的动点(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图1,连接OP交BC于点D,当SCPD:SBPD1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,1),点G为x轴负半轴上的一点,OGE15,连接PE,若PEG2OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由9.(2019湖北十堰)已知抛物线ya(x2)2+c经过点A(2,0)和C(0,94),与x轴交于另一点B,顶点为D(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且DEF

7、A,则DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且SPBDSCBD=m,试确定满足条件的点P的个数10.(2019湖北咸宁)如图,在平面直角坐标系中,直线y=-12x+2与x轴交于点A,与y轴交于点B,抛物线y=-12x2+bx+c经过A,B两点且与x轴的负半轴交于点C(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当ABD2BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标11.(2019湖南湘西)如图,抛物线yax2+bx(a0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,BAD的平分线AM交BC于点M,点N是CD的中点,已知OA2,且OA:AD1:3(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使ODP中OD边上的高为6105?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 一轮复习