2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷(含详细解答)

上传人:hua****011 文档编号:118620 上传时间:2020-01-26 格式:DOC 页数:22 大小:391KB
下载 相关 举报
2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷(含详细解答)_第1页
第1页 / 共22页
2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷(含详细解答)_第2页
第2页 / 共22页
2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷(含详细解答)_第3页
第3页 / 共22页
2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷(含详细解答)_第4页
第4页 / 共22页
2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷(含详细解答)_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确)1(3分)下列实数是无理数的是()A2018BC3.14159D2(3分)下列各点中位于第四象限的点是()A(3,4)B(3,4)C(3,4)D(3,4)3(3分)以下列各组数据为三角形的三边,能构成直角三角形的是()A1cm,2cm,3cmB2cm,2cm,2cmC4cm,2cm,2cmDcm,cm,1cm4(3分)已知是方程kx+2y2的解,则k的值为()A3B3C5D55(3分)下列根式是最简二次根式的是()ABCD6(3分)如图,三

2、角形是直角三角形,四边形是正方形,已知正方形A的面积是64,正方形B的面积是100,则半圆C的面积是()A36B4.5C9D187(3分)下列说法错误的是()A5是25的算术平方根B1的立方根是1C1没有平方根D0的平方根与算术平方根都是08(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A甲B乙C丙D丁9(3分)已知点P(4,3),则点P到y轴的距离为()A4B4C3D310(3分)一次函数y(k1)xk的大致图象

3、如图所示,关于该次函数,下列说法错误的是()Ak1By随x的增大而增大C该函数有最小值D函数图象经过第一、三、四象限二、填空题(本大题共6小题,每小题4分,共24分)11(4分)计算: 12(4分)已知点A(a,5)与点A(2,b)关于x轴对称,则a+b 13(4分)已知数据1.5,1.5,3,1.5,2,3,1,1.5,这组数据的众数是 14(4分)已知x+2y30,则2x+4y5 15(4分)如图,在平面直角坐标系内,一次函数ykx+b(k0)与正比例函数y2x的图象相交于点A,且与x轴交于点B,点A的纵坐标为2,则根据图象可得二元一次方程组的解是 16(4分)如图是一个“螺旋形”图案,该

4、图案是由一连串直角三角形演化而成的,其中OA11,A1A2A2A3A3A4AnAn+12,则OA10A11的面积为 三、解答题(一)(本大题3小题,每小题6分,共18分)17(6分)计算:(1)+(+2)18(6分)如图,已知ABCD,若ACD66,AFE30,求BEF的度数19(6分)ABC在直角坐标系内的位置如图(1)请在这个坐标系内画出A1B1C1,使A1B1C1与ABC关于x轴对称;(2)求线段OB1的长度四、解答题(二)(本大题3小题,每小题7分,共21分)20(7分)某商场计划购进A、B两种新型节能台灯共100盏,已知A型台灯的进价是30(元/盏),B型台灯每台进价比A型台灯贵20

5、元,若商场预计进货款为3500元,则这两种台灯各购进多少盏?21(7分)如图所示,ABC中(1)若A:B:C2:3:4,求C的度数;(2)若AB2,AC6,BC2,求BC边上的高22(7分)为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图请根据统计图中的信息解答下列问题:(1)图1中的度数是 ,并把图2条形统计图补充完整(2)抽取的这部分的学生的体育科目测试结果的中位数是在 级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70

6、分、50分,请计算抽取的这部分学生体育的平均成绩五、解答题(三)(本大题3小题,每小题9分,共27分)23(9分)某游泳馆普通票价30元/张,暑假为了促销,新推出一种优惠卡:售价300元/张,每次凭卡另收15元暑假普通票正常出售,优惠卡仅限暑假使用,不限次数设游泳x次时,所需总费用为y元(1)分别写出选择优惠卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若两种消费方式对应的函数图象如图所示,请求出点A、B的坐标;24(9分)图(1)是我们常见的基本图形,我们可以称之为“8”字形“8”字形有一个重要的性质如下:A+BC+D利用这个性质并结合你所学的知识解决以下问题:(1)如图(

7、1),A+B105,C42,直接写出D的度数为 ;(2)如图(2),若BN、DN分别是ABC、ADC的角平分线,BN与DN交于点N、且A55,C59,求N的度数;(3)如图(3),若AM、BN、CM、DN分别是BAD、ABC、BCD和ADC的角平分线,AM与CM、BN交于点M、G,DN与BN、CM交于点N、H,且AEB54,求M+N的度数25(9分)如图,已知直线l1:yx+1和直线l2:y3x+1,过点B(3,0)作ABx轴,交直线l1于点A,若点P是x轴上的一个动点,过点P作平行于y轴的直线,分别与l1、l2交于点C、D,连接AD、BC(1)直接写出线段AB ;(2)当P的坐标是(2,0)

8、时,求直线BC的解析式;(3)若ABC的面积与ACD的面积相等,求点P的坐标2018-2019学年广东省佛山市南海区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确)1(3分)下列实数是无理数的是()A2018BC3.14159D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【解答】解:A2018是整数,属于有理数;B是无理数;C3.14159是有限小数,即分数,属于有理数;D是分

9、数,属于有理数;故选:B【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数2(3分)下列各点中位于第四象限的点是()A(3,4)B(3,4)C(3,4)D(3,4)【分析】应先判断点在第四象限内点的坐标的符号特点,进而找相应坐标【解答】解:第四象限的点的坐标的符号特点为(+,),观察各选项只有C符合条件,故选:C【点评】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)3(3分)以下列各组数据为三角形的三

10、边,能构成直角三角形的是()A1cm,2cm,3cmB2cm,2cm,2cmC4cm,2cm,2cmDcm,cm,1cm【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【解答】解:A、12+3232,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、22+2242,故不能构成直角三角形;D、12+()2()2,故能构成直角三角形;故选:D【点评】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可勾股定理的逆定理:若三角形三边满足a2+b2c2,那么这个三角形是直角三角形4(3分)已知是方程k

11、x+2y2的解,则k的值为()A3B3C5D5【分析】把x与y的值代入方程计算即可求出k的值【解答】解:把代入方程得:2k+42,解得:k3,故选:B【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值5(3分)下列根式是最简二次根式的是()ABCD【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【解答】解:A,不符合题意;B5,不符合题意;C,不符合题意;D是最简二次根式,符合题意;故选:D【点评】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:

12、(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式6(3分)如图,三角形是直角三角形,四边形是正方形,已知正方形A的面积是64,正方形B的面积是100,则半圆C的面积是()A36B4.5C9D18【分析】根据正方形的性质分别求出DE,EF,根据勾股定理求出DF,根据圆的面积公式计算【解答】解:正方形A的面积是64,正方形B的面积是100,DE10,EF8,由勾股定理得,DF6,半圆C的面积324.5,故选:B【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2c27(3分)下列说法错误的是()A5是25的算术平方根B1的立方根是1C1

13、没有平方根D0的平方根与算术平方根都是0【分析】根据算术平方根和平方根及立方根的定义逐一求解可得【解答】解:A5是25的算术平方根,此选项说法正确;B1的立方根是1,此选项说法错误;C1没有平方根,此选项说法正确;D0的平方根与算术平方根都是0,此选项说法正确;故选:B【点评】本题主要考查立方根、平方根与算术平方根,解题的关键是熟练掌握算术平方根和平方根及立方根的定义8(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()

14、A甲B乙C丙D丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加【解答】解:,从甲和丙中选择一人参加比赛,选择甲参赛,故选:A【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键9(3分)已知点P(4,3),则点P到y轴的距离为()A4B4C3D3【分析】利用点的横坐标得出点P到y轴的距离【解答】解:点P(4,3),点P到y轴的距离为:4故选:A【点评】此题主要考查了点的坐标,正确理解点的横纵坐标的意义是解题关键10(3分)一次函数y(k1)xk的大致图象如图所示,关于该次函数,下列说法错误的是()Ak1By随x的增大而增大C该函数有最小值D函数图象经过第一、三、四

15、象限【分析】根据一次函数的增减性确定有关k的不等式组,求解即可【解答】解:观察图象知:y随x的增大而增大,且交与y轴负半轴,函数图象经过第一、三、四象限,解得:k1,该函数没有最小值,故选:C【点评】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大二、填空题(本大题共6小题,每小题4分,共24分)11(4分)计算:4【分析】根据算术平方根的概念去解即可算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果【解答】解:4216,4,故答案为4【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误12(

16、4分)已知点A(a,5)与点A(2,b)关于x轴对称,则a+b7【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a与b的值,再代入计算即可【解答】解:点A(a,5)与点A(2,b)关于x轴对称,a2,b5,则a+b257,故答案为:7【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律13(4分)已知数据1.5,1.5,3,1.5,2,3,1,1.5,这组数据的众数是1.5【分析】根据众数的定义进行解答即可【解答】解:数据1.5出现了4次,最多,众数为1.5,故答案为:1.5【点评】此题考查了众数的知识,众数是一组数据中出现次数最多的数,众数可能不

17、唯一14(4分)已知x+2y30,则2x+4y51【分析】由已知等式得出x+2y3,代入到原式2(x+2y)5计算可得【解答】解:x+2y30,x+2y3,则原式2(x+2y)5235651,故答案为:1【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用15(4分)如图,在平面直角坐标系内,一次函数ykx+b(k0)与正比例函数y2x的图象相交于点A,且与x轴交于点B,点A的纵坐标为2,则根据图象可得二元一次方程组的解是【分析】先利用直线y2x的解析式确定A点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解【解答】解:当y2时,2x2,解得x1,则A(1,2)

18、,所以二元一次方程组的解是故答案为【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标16(4分)如图是一个“螺旋形”图案,该图案是由一连串直角三角形演化而成的,其中OA11,A1A2A2A3A3A4AnAn+12,则OA10A11的面积为【分析】根据勾股定理求出各斜边的长,然后根据三角形的面积公式即可得到结论【解答】解:OA11,A1A2A2A3A3A4AnAn+12,OA2,OA3,OA4,OA5,OAn,OA10,OA10A11的面积2,故答案为:【点评】此题主要考查的是勾股定理的运用,三角形的面积,熟知在任何一个直角三角形中,两条直角边长的平方

19、之和一定等于斜边长的平方是解答此题的关键三、解答题(一)(本大题3小题,每小题6分,共18分)17(6分)计算:(1)+(+2)【分析】先根据二次根式的乘除法则运算,然后化简后合并即可【解答】解:原式2+22+3+22+4【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍18(6分)如图,已知ABCD,若ACD66,AFE30,求BEF的度数【分析】依据平行线的性质,即可得到AC66,再根据三角形外角性质,即可得到BEF的度数【解答】解

20、:ABCD,AC66,又AFE30,BEFAFE+A30+6696【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等19(6分)ABC在直角坐标系内的位置如图(1)请在这个坐标系内画出A1B1C1,使A1B1C1与ABC关于x轴对称;(2)求线段OB1的长度【分析】(1)直接利用关于x轴对称点的性质得出对应点位置即可;(2)利用勾股定理进而得出答案【解答】解:(1)如图所示:A1B1C1,即为所求;(2)线段OB1的长度为:4【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键四、解答题(二)(本大题3小题,每小题7分,共21分

21、)20(7分)某商场计划购进A、B两种新型节能台灯共100盏,已知A型台灯的进价是30(元/盏),B型台灯每台进价比A型台灯贵20元,若商场预计进货款为3500元,则这两种台灯各购进多少盏?【分析】设该商场购进A型台灯x台,B型台灯y台,根据总价单价数量结合用3500元共购进A、B两种新型节能台灯共100盏,即可得出关于x,y的二元一次方程组,解之即可得出结论【解答】解:设该商场购进A型台灯x台,B型台灯y台,依题意,得:,解得:答:该商场购进A型台灯75台,B型台灯25台【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键21(7分)如图所示,ABC中(1

22、)若A:B:C2:3:4,求C的度数;(2)若AB2,AC6,BC2,求BC边上的高【分析】(1)根据比例设A2k,B3k,C4k,然后利用三角形的内角和等于180列出方程,再求出k,从而得到C即可;(2)根据勾股定理的逆定理得出ABC是直角三角形,进而解答即可【解答】解:设A2k,B3k,C4k,由题意得,2k+3k+4k180,解得k20,所以,C42080,(2)AB2,AC6,BC2,BC2AB2+AC2,ABC是直角三角形,BC边上的高【点评】此题考查勾股定理问题,关键是根据勾股定理和其逆定理解答22(7分)为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次

23、体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图请根据统计图中的信息解答下列问题:(1)图1中的度数是54,并把图2条形统计图补充完整(2)抽取的这部分的学生的体育科目测试结果的中位数是在C级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩【分析】(1)根据统计图中的数据可以计算出本次抽查的学生数,从而可以求得的度数和C级的学生数,从而可以将条形统计图补充完整;(2)根据(1)中补充完整的条形统计图和中位数的定义可以解答本题;(3)根据题意和统计图中的

24、数据可以计算出抽取的这部分学生体育的平均成绩【解答】解:(1)本次抽查的学生有:1230%40(人),的度数是:36054,C级学生有:40612814(人),补全的条形统计图如右图所示,故答案为:54;(2)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为:C;(3)72(分),答:抽取的这部分学生体育的平均成绩是72分【点评】本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答五、解答题(三)(本大题3小题,每小题9分,共27分)23(9分)某游泳馆普通票价30元/张,暑假为了促销,新推出一种优惠卡:售价300元/

25、张,每次凭卡另收15元暑假普通票正常出售,优惠卡仅限暑假使用,不限次数设游泳x次时,所需总费用为y元(1)分别写出选择优惠卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若两种消费方式对应的函数图象如图所示,请求出点A、B的坐标;【分析】(1)根据题意可以分别写出选择优惠卡、普通票消费时,y与x之间的函数关系式;(2)根据题意可知,点A的坐标就是选择优惠卡时对应的函数解析式与y轴的交点,点B的坐标就是两个函数交点的坐标,本题得以解决【解答】解:(1)由题意可得,选择优惠卡时,y与x的函数关系式为:y300+15x,当选择普通票时,y与x的函数关系式为:y30x;(2)将y0代入

26、y300+15x,得y300,即点A的坐标为(0,300),令300+15x30x,得x20,则30x600,即点B的坐标为(20,600),由上可得,点A的坐标为(0,300),点B的坐标为(20,600)【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答24(9分)图(1)是我们常见的基本图形,我们可以称之为“8”字形“8”字形有一个重要的性质如下:A+BC+D利用这个性质并结合你所学的知识解决以下问题:(1)如图(1),A+B105,C42,直接写出D的度数为63;(2)如图(2),若BN、DN分别是ABC、ADC的角平分线,BN与DN交于点

27、N、且A55,C59,求N的度数;(3)如图(3),若AM、BN、CM、DN分别是BAD、ABC、BCD和ADC的角平分线,AM与CM、BN交于点M、G,DN与BN、CM交于点N、H,且AEB54,求M+N的度数【分析】(1)依据A+BC+D,A+B105,C42,即可得到D的度数;(2)依据BN、DN分别是ABC、ADC的角平分线,即可得到13,24,再根据8字形即可得到A+1N+2,3+N4+C,两式相减可得,ANNC,进而得到N的度数;(3)根据(2)中的方法可得N(BAE+DCE),M(ABE+CDE),再根据AEBCED54,可得BAE+ABE+ECD+CDE2(18054)252,

28、进而得到M+N(BAE+DCE)+(ABE+CDE)252126【解答】解:(1)A+BC+D,A+B105,C42,D1054263,故答案为:63(2)如图2,BN、DN分别是ABC、ADC的角平分线,13,24,又A+1N+2,3+N4+C,两式相减可得,ANNC,2NA+C,即N(A+C),又A55,C59,N57;(3)如图3,BN、DN分别是ABC、ADC的角平分线,ABGEBG,EDHCDH,又BAD+ABGN+EDN,EBG+NCDH+DCB,两式相减可得,BADNNDCB,2NBAD+DCB,即N(BAE+DCE),同理可得,M(ABE+CDE),又AEBCED54,BAE+

29、ABE+ECD+CDE2(18054)252,M+N(BAE+DCE)+(ABE+CDE)252126【点评】本题考查了三角形的内角和定理,角平分线的定义的综合运用注意利用对顶角相等和三角形内角和定理求出角的关系是解题的关键,要注意整体思想的利用25(9分)如图,已知直线l1:yx+1和直线l2:y3x+1,过点B(3,0)作ABx轴,交直线l1于点A,若点P是x轴上的一个动点,过点P作平行于y轴的直线,分别与l1、l2交于点C、D,连接AD、BC(1)直接写出线段AB;(2)当P的坐标是(2,0)时,求直线BC的解析式;(3)若ABC的面积与ACD的面积相等,求点P的坐标【分析】(1)ABx

30、轴且点A在直线l1上,点B的坐标为(3,0)所以求出点A的坐标即可求AB(2)因DCx轴于点P,点P(2,0),点C在直线l1上,即可以求出点C的坐标,即可用待定系数法求直线BC的解析式(3)因ABC的面积与ACD的面积相等,即DCAB时两三角形的面积相等,设点P(t,0),则有DPDCAB,即可求出点P的坐标【解答】解:(1)ABx轴且点A在直线l1上,将x3代入,得即AB(2)点P(2,0)CDx轴,将x2代入,得,故点C的坐标为(2,2)设直线BC的解析式为:ykx+b,将点C,点B代入得,解得故直线BC的解析式为:y2x+6(3)由题意得,当SABCSACD时,DCAB设点P的坐标为(t,0),解得t1或t1点P的坐标为(1,0)或(1,0)【点评】此题主要考查的是一次函数的图象及用待定系数法求直线的解析式,但要注意到三角形的边长与一次函数y值的区别

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 期末试卷 > 八年级上