2020中考数学备考训练:圆解析版
《2020中考数学备考训练:圆解析版》由会员分享,可在线阅读,更多相关《2020中考数学备考训练:圆解析版(64页珍藏版)》请在七七文库上搜索。
1、2020中考备考训练圆一选择题(共13小题)1如图,以点P为圆心作圆,所得的圆与直线l相切的是()A以PA为半径的圆B以PB为半径的圆C以PC为半径的圆D以PD为半径的圆2已知圆锥的底面半径为2cm,母线长为3cm,则它的侧面展开图的面积为()A18cm2B12cm2C6cm2D3cm23如图,O是ABC的外接圆,AD是O的直径,若O的半径为5,AC8则cosB的值是()ABCD4九章算术是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆
2、形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A5步B6步C8步D10步5如图,在O中,BOC100,则A等于()A100B50C40D256如图,A,B,C是O上的三个点,若C35,则AOB的度数为()A35B55C65D707如图,AB是O的直径,AOC130,则D等于()A25B35C50D658如图,在ABC中,A90,ABAC2,点O是边BC的中点,半圆O与ABC相切于点D、E,则阴影部分的面积等于()A1BC1D9如图,AB为O的直径,CD是弦,ABCD于E,若AB10,OE3,则弦CD的长为()A4B8CD210如图,若AB是O的直径,CD是O的弦,ABD58,则C的度
3、数为()A116B58C42D3211如图,O的半径OC垂直于弦AB,D是优弧AB上的一点(不与点A、B重合),若AOC50,则CDB等于()A25B30C40D5012如图,等边三角形ABC内接于O,连接OB,OC,那么BOC的度数是()A150B120C90D6013如图,AB为O直径,CD为O的弦,ACD28,则BAD的度数为()A28B56C62D72二填空题(共15小题)14若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为 15如图,PA,PB是O的切线,A,B为切点,AC是O的直径,BAC15,则P的度数为 16如图所示的网格是正方形网格,线段AB绕点A顺时针旋转(
4、0180)后与O相切,则的值为 17阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ACB是ABC的一个内角求作:APBACB小明的做法如下:如图作线段AB的垂直平分线m;作线段BC的垂直平分线n,与直线m交于点O;以点O为圆心,OA为半径作ABC的外接圆;在弧ACB上取一点P,连结AP,BP所以APBACB老师说:“小明的作法正确”请回答:(1)点O为ABC外接圆圆心(即OAOBOC)的依据是 ;(2)APBACB的依据是 18如图,正六边形ABCDEF内接于O,O的半径为1,则的长为 19如图,O的半径为6,OA与弦AB的夹角是30,则弦AB的长度是 20如图,在扇形OA
5、B中,AOB90,OA3,将扇形OAB绕点A逆时针旋转n(0n180)后得到扇形OAB,当点O在弧AB上时,n为 ,图中阴影部分的面积为 21两圆半径分别为3cm和7cm,当圆心距为9cm时,两圆的位置关系是 22若圆锥的底面周长为2cm,将其展开后所得扇形的半径为6cm,则圆锥的侧面积为 cm223如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型若该圆的半径为1,扇形的圆心角等于60,则这个扇形的半径R的值是 24如图,梯形ABCD中,ADBC,C90,ABAD4,BC6,以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 25李红同学为了在新年晚会上表演节目,
6、她利用半径为40cm的扇形纸片制作一个圆锥形纸帽(如图,接缝处不重叠),如果圆锥底面半径为10cm,那么这个圆锥的侧面积是 cm226如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB8cm,小圆半径为3cm,那么大圆半径为 cm27如图,PA、PB切O于点A、B,点C是O上一点,且ACB65,则P 度28已知:如图,在22的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 三解答题(共22小题)29一些不便于直接测量的圆形孔道的直径可以用如下方法测量如图,把一个直径为10mm的小钢球紧贴在孔道边缘
7、,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB30如图,在RtABE中,B90,以AB为直径的O交AE于点C,CE的垂直平分线FD交BE于点D,连接CD(1)判断CD与O的位置关系,并证明;(2)若ACAE12,求O的半径31数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角如图1,M为所对的一个圆外角(1)请在图2中画出所对的一个圆内角;提出猜想(2)通过多次画图、测量,获得了两个
8、猜想:一条弧所对的圆外角 这条弧所对的圆周角;一条弧所对的圆内角 这条弧所对的圆周角;(填“大于”、“等于”或“小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题(4)如图3,F,H是CDE的边DC上两点,在边DE上找一点P使得FPH最大请简述如何确定点P的位置(写出思路即可,不要求写出作法和画图)32如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分如果M是O中弦CD的中点,EM经过圆心O交O于点E,CD10,EM25求O的半径33如图,AB是O的直径,C,D是O上两点,且,过点C的
9、直线CFAD于点F,交AB的延长线于点E,连接AC(1)求证:EF是O的切线;(2)连接FO,若sinE,O的半径为r,请写出求线段FO长的思路34九章算术是中国传统数学重要的著作,奠定了中国传统数学的基本框架九章算术中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图),其中BOCD于点A,求间径就是要求O的直径再次阅读后,发现AB 寸,CD 寸(一尺等于十寸),通过运用有关知识即可解决这个问题请你补全题目条件,并帮助小智求出O的直径35如图,已知ABC是等边三角形,以AB为直径作O,交BC边于点D,交
10、AC边于点F,作DEAC于点E(1)求证:DE是O的切线;(2)若ABC的边长为4,求EF的长度36如图,在平面直角坐标系中,直径为2的A经过坐标系原点O(0,0),与x轴交于点B,与y轴交于点C(0,)(1)求点B的坐标;(2)如图,过点B作A的切线交直线OA于点P,求点P的坐标;(3)过点P作A的另一条切线PE,请直接写出切点E的坐标37如图,在平面直角坐标系xOy中,以点A(2,3)为圆心的A交x轴于点B,C,BC8,求A的半径38如图,在ABC中,BABC,以AB为直径的O分别交AC,BC于点D,E,BC的延长线与O的切线AF交于点F(1)求证:ABC2CAF;(2)若AC2,CE:E
11、B1:4,求CE,AF的长39如图,方格纸中每个小正方形的边长均为1,ABC的顶点均在小正方形的顶点处(1)以点A为旋转中心,把ABC顺时针旋转90,画出旋转后的ABC;(2)在(1)的条件下,求点C运动到点C所经过的路径长40如图,O的半径为3,点P是弦AB延长线上的一点,连接OP,若OP4,P30,求弦AB的长41如图,AB是O的直径,弦CDAB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EGEK(1)求证:EF是O的切线;(2)若O的半径为13,CH12,ACEF,求OH和FG的长42在平面直角坐标系中,等腰RtOAB斜边OB在y
12、轴上,且OB4(1)画出OAB绕原点O顺时针旋转90后得到的三角形OAB;(2)求点A在旋转过程中经过的路径长43如图,DE是O的直径,CE与O相切,E为切点连接CD交O于点B,在EC上取一个点F,使EFBF(1)求证:BF是O的切线;(2)若SAMCSAMO+SOMCSAOC,DE9,求BF的长44已知:O是ABC的外接圆,ABAC,点M为O上一点,且在弦BC下方(1)如图,若ABC60,BM1,CM3,则AM的长为 ;(2)如图,若ABC45,BM1,CM3,则AM的长为 ;(3)如图,若ABC30,BM1,CM3,则AM的长为 ;(4)如图,若ABCn,BMa,CMb,(其中ab),求出
13、AM的长(答案用含有a,b及n的三角函数的代数式表示)45如图,CD与AB是O内两条相交的弦,且AB为O的直径,CEAB于点E,CE5,连接AC、BD(1)若,则cosA ;(2)在(1)的条件下,求BE的长46如图,在ABC中,ACB90,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边和BC边分别交于点D、点E,连接CD,且CDCA,BD,tanADC2(1)求证:CD是半圆O的切线;(2)求半圆O的直径;(3)求AD的长47如图所示的直面直角坐标系中,OAB的三个顶点坐标分别为O(0,0),A(1,3)B(3,2)(1)将OAB绕原点O逆时针旋转90画出旋转后的OAB;(2)求出点
14、B到点B所走过的路径的长48如图,在矩形ABCD中,点O在对角AC上,以OA长为半径的O与AD、AC分别交于点E、F,且ACBDCE(1)求证:CE是O的切线;(2)若,AE7,求O的直径49在ABC中,A90,AB4,AC3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N以MN为直径作O,并在O内作内接矩形AMPN令AMx(1)用含x的代数式表示MNP的面积S;(2)当x为何值时,O与直线BC相切;(3)在动点M的运动过程中,记MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?50已知:如图,ABC内接于O,连接AO并延
15、长交BC于点D,若AO5,BC8,ADB90,求ABC的面积2020中考备考训练圆参考答案与试题解析一选择题(共13小题)1如图,以点P为圆心作圆,所得的圆与直线l相切的是()A以PA为半径的圆B以PB为半径的圆C以PC为半径的圆D以PD为半径的圆【分析】根据直线与圆的位置关系的判定方法进行判断【解答】解:PBl于B,以点P为圆心,PB为半径的圆与直线l相切故选:B【点评】本题考查了直线与圆的位置关系:判断直线和圆的位置关系:设O的半径为r,圆心O到直线l的距离为d若直线l和O相交dr;直线l和O相切dr;直线l和O相离dr2已知圆锥的底面半径为2cm,母线长为3cm,则它的侧面展开图的面积为
16、()A18cm2B12cm2C6cm2D3cm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【解答】解:它的侧面展开图的面积2236(cm2)故选:C【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长3如图,O是ABC的外接圆,AD是O的直径,若O的半径为5,AC8则cosB的值是()ABCD【分析】连接CD,则可得ACD90,且BD,在RtADC中可求得CD,则可求得cosD,即可求得答案【解答】解:如图,连接CD,ADO的直径,ACD90,且BD,在R
17、tACD中,AD5210,AC8,CD6,cosD,cosBcosD,故选:B【点评】本题主要考查圆周角定理及三角函数的定义,构造直角三角形是解题的关键4九章算术是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A5步B6步C8步D10步【分析】由勾股定理可求得斜边长,分别连接圆心和三个切点,设内切圆的半径为r,利用面积相等可得到关于r的方程,可求得内切圆的半径,则可求得内切圆的直径
18、【解答】解:如图,在RtABC中,AC8,BC15,C90,AB17,SABCACBC81560,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,SABCSAOB+SBOC+SAOCr(AB+BC+AC)20r,20r60,解得r3,内切圆的直径为6步,故选:B【点评】本题主要考查三角形的内切圆,连接圆心和切点,把三角形的面积分成三个三个角形的面积得到关于r的方程是解题的关键5如图,在O中,BOC100,则A等于()A100B50C40D25【分析】根据圆周角定理可求得A50【解答】解:BOC100,ABOC50故选:B【点评】本题利用了圆周角定理:在同圆或
19、等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半6如图,A,B,C是O上的三个点,若C35,则AOB的度数为()A35B55C65D70【分析】由A,B,C是O上的三个点,若C35,直接利用圆周角定理求解即可求得答案【解答】解:A,B,C是O上的三个点,C35,AOB2C70故选:D【点评】此题考查了圆周角定理此题比较简单,注意掌握数形结合思想的应用7如图,AB是O的直径,AOC130,则D等于()A25B35C50D65【分析】由AB是O的直径,AOC130,可得BOC180AOC50,然后由圆周角定理即可求得答案【解答】解:AB是O的直径,AOC130,BOC180AOC



- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 中考 数学 备考 训练 解析

链接地址:https://www.77wenku.com/p-115340.html