ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:3.58MB ,
资源ID:9987      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-9987.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三年高考(2016-2018)数学(理科)真题分类解析:专题12-平面向量)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

三年高考(2016-2018)数学(理科)真题分类解析:专题12-平面向量

1、专题 12 平面向量考纲解读明方向考点 内容解读 要求 高考示例 常考题型 预测热度1.平面向量的基本概念与线性运算了解向量的实际背景;理解平面向量的概念,理解两个向量相等的含义;理解向量的几何表示;掌握向量加法、减法的运算,并理解其几何意义掌握2015 课标,7;2015 陕西,7;2013 四川,12选择题填空题 2.向量的共线问题掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义掌握2015 课标,13;2013 陕西,3选择题填空题 分析解读 1.从“方向” 与“ 大小 ”两个方面理解平面向量的概念.2.结合图形理解向量的线性运算,熟练掌握平行四

2、边形法则与三角形法则.3.向量共线的条件要结合向量数乘的意义去理解,并能灵活应用.4.向量的概念与运算是必考内容.5.本节在高考中主要考查平面向量的线性运算及其几何意义,分值约为 5分,属中低档题.考点 内容解读 要求 高考示例 常考题型 预测热度1.平面向量基本定理了解平面向量的基本定理及其意义 了解2017 江苏,12;2015 北京,13;2013 北京,13选择题填空题 2.平面向量的坐标运算掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件掌握2016 课标全国,3;2015 江苏,6;2014 陕西,13;2013 重

3、庆,10选择题填空题 分析解读 1.理解平面向量基本定理的实质,理解基底的概念,会用给定的基底表示向量.2.掌握求向量坐标的方法,掌握平面向量的坐标运算.3.能够根据平面向量的坐标运算解决向量的共线、解三角形等有关问题.4.用坐标表示的平面向量共线的条件是高考考查的重点,分值约为 5 分,属中低档题.考点 内容解读 要求 高考示例 常考题型 预测热度1.数量积的定义(1)平面向量的数量积理解平面向量数量积的含义及其物理意义;了解平面向量的数量积与向量投影理解2017 浙江,10;2016 天津,7;2015 湖北,11;2014 课标,3选择题填空题 2.平面向量的长度问题掌握2017 课标全

4、国,13;2017 浙江,15;2016 北京,4;2014 浙江,8选择题填空题 3.平面向量的夹角、两向量垂直及数量积的应用的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(2)向量的应用会用向量方法解决某些简单的平面几何问题;会用向量方法解决简单的力学问题与其他一些实际问题 掌握2017 课标全国,12;2017 山东,12;2016 山东,8;2015 重庆,6;2014 重庆,4选择题填空题 分析解读 1.理解数量积的定义、几何意义及其应用 .2.掌握向量数量积的性质及运算律 ;掌握求向量长度的方法.3

5、.会用向量数量积的运算求向量夹角,判断或证明向量垂直.4.利用数形结合的方法和函数的思想解决最值等综合问题.2018 年高考全景展示1 【2018 年浙江卷】已知 a,b,e 是平面向量,e 是单位向量若非零向量 a 与 e 的夹角为 ,向量b 满足 b24eb+3=0,则| ab|的最小值是A. 1 B. +1 C. 2 D. 2【答案】A【解析】分析:先确定向量 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设 ,则由 得 ,由 得 因此 的最小值为圆心 到直线的距离 减去半径 1,为 选 A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、

6、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.2 【2018 年理数天津卷】如图,在平面四边形 ABCD 中, , , ,. 若点 E 为边 CD 上的动点,则 的最小值为 A. B. C. D. 【答案】A【解析】分析:由题意建立平面直角坐标系,然后结合点的坐标得到数量积的坐标表示,最后结合二次函数的性质整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则 , , , ,点 在 上,则 ,设 ,则: ,即 ,据此可得: ,且: , ,由数量积的坐标运算法则可得: ,整理可得:

7、,结合二次函数的性质可知,当 时, 取得最小值 .本题选择 A 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用3 【2018 年理新课标 I 卷】设抛物线 C:y 2=4x 的焦点为 F,过点(2,0)且斜率为 的直线与 C交于 M,N 两点,则 =A. 5 B. 6 C. 7 D. 8【答案】D详解:根据题意,过点(2,0)且斜率为 的直线方程为 ,与抛物线方程联立,消元整理得: ,解得 ,又 ,所以,从而可以求得 ,故选 D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所

8、满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得 ,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点 M、N 的坐标,应用韦达定理得到结果.4 【2018 年理新课标 I 卷】在 中, 为 边上的中线, 为 的中点,则A. B. C. D. 【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得 ,之后应用向量的加法运算法则-三角形法则,得到 ,之后将其合并,得到 ,下一步应用相反向量,求得 ,从而求得结果.详解:根据向量的运算法则,可得,所以

9、,故选 A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5 【2018 年理数全国卷 II】已知向量, 满足 , ,则A. 4 B. 3 C. 2 D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为 所以选 B.点睛:向量加减乘: 6 【2018 年江苏卷】在平面直角坐标系 中,A 为直线 上在第一象限内的点, ,以AB 为直径的圆 C 与直线 l 交于另一点 D若 ,则点 A 的横坐标为_【答案】3【解析】分析:先根据条件确定圆方

10、程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设 ,则由圆心 为 中点得 易得 ,与 联立解得点 D 的横坐标 所以 .所以 ,由 得 或 ,因为 ,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.7 【2018 年全国卷理】已知向量 , , 若 ,则 _【答案】【解析】分析:由两向量共线的坐标关系计算即可。详解:由题可得 , , ,即 ,故答案为点睛:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。201

11、7 年高考全景展示1.【2017 课标 3,理 12】在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若 = + ,则 + 的最大值为A3 B2 C D2【答案】A【解析】试题分析:如图所示,建立平面直角坐标系设 ,根据等面积公式可得圆的半径 ,即圆 C 的方程是 ,若满足 ,即 , ,所以 ,设 ,即 ,点 在圆 上,所以圆心到直线的距离 ,即 ,解得 ,所以 的最大值是 3,即 的最大值是 3,故选 A.【考点】 平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加

12、、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.2.【2017 北京,理 6】设 m,n 为非零向量,则“存在负数 ,使得 ”是“ ”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D )既不充分也不必要条件【答案】A【解析】试题分析:若 ,使 ,即两向量反向,夹角是 ,那么T,若 ,那么两向量的夹角为 ,并不一定反向,即不一定存在负数 ,使得 ,所以是充分不必要条件,故选 A.【考点】1.向量;2.充分必要条件.【名师点睛】判断充分必要条件的的方法:1.根据定义,若 ,那么 是

13、的充分不必要 ,同时 是 的必要不充分条件,若 ,那互为充要条件,若 ,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若 ,若,那么 是 的充分必要条件,同时 是 的必要不充分条件,若 ,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将 是 条件的判断,转化为 是 条件的判断.3.【2017 浙江,10】如图,已知平面四边形 ABCD,ABBC,ABBCAD2,CD3,AC 与BD 交于点 O,记 , , ,则A B C D【答案】C【解析】试题分析:因为 ,所以选 C【考点】 平面向量数量积运算【名师点睛

14、】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决列出方程组求解未知数本题通过所给条件结合数量积运算,易得,由 ABBCAD 2,CD3,可求 , ,进而解得4.【2017 课标 1,理 13】已知向量 a,b 的夹角为 60,| a|=2,|b|=1,则| a +2 b |= .【答案】【解析】试题分析:所以 .秒杀解析:利用如下图形,可以判断出 的模长是以 2 为边长的菱形

15、对角线的长度,则为 .【考点】平面向量的运算.【名师点睛】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.5【2017 浙江,15】已知向量 a,b 满足 则 的最小值是_,最大值是_【答案】4,【解析】试题分析:设向量 的夹角为 ,由余弦定理有:,则:,令 ,则 ,据此可得: ,即 的最小值是 4,最大值是 【考点】平面向量模长运算【名师点睛】本题通过设入向量 的夹角 ,结合模长公式, 解得,再利用三角有界性求出最大、最小值,属中

16、档题,对学生的转化能力和最值处理能力有一定的要求6.【2017 江苏,12】如图,在同一个平面内,向量 , , 的模分别为 1,1, , 与 的夹角为 ,且 tan =7, 与 的夹角为 45.若 , 则 .【答案】3 【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.(3)向量的两个作用:载体作用

17、:关键是利用向量的意义、作用脱去“向量外衣” ,转化为我们熟悉的数学问题;工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.7.【2017 天津,理 13】在 中, , , .若 ,且 ,则 的值为_.【答案】 【解析】 ,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的 已知模和夹角,选作基地易于计算数量积.8.【2017 山东,理 12】已知 是互相垂直的单位向量,若 与 的夹角为 ,则实数 的值是 .【答案】【考点】1.平面向量的数量积.2.平行向量的夹

18、角.3.单位向量.【名师点睛】1.平面向量 与 的数量积为 ,其中 是 与 的夹角,要注意夹角的定义和它的取值范围: .2.由向量的数量积的性质有 , , ,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题3.本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立 的方程 .9.【2017 江苏,16】 已知向量(1)若 ab,求 x 的值;(2)记 ,求 的最大值和最小值以及对应的 的值.【答案】 (1) (2) 时, 取得最大值,为 3; 时, 取得最小值,为.【解析】解:(1)因为 , ,ab,所以 .若 ,则 ,与 矛盾,故 .于是 . 又 ,所以 .(

19、2) .因为 ,所以 ,从而 .于是,当 ,即 时, 取到最大值 3;当 ,即 时, 取到最小值 .【考点】向量共线,数量积【名师点睛】(1)向量平行: , ,(2)向量垂直: ,(3)向量加减乘: 2016 年高考全景展示1.【2016 高考新课标 1 卷】设向量 a=(m,1),b=(1,2),且|a+b| 2=|a|2+|b|2,则 m= .【答案】【解析】试题分析:由 ,得 ,所以 ,解得 .考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若 ,则 .量的坐标,利用向量相等

20、,列方程组,解出未知数的值.2.【2016 高考山东理数】已知非零向量 m,n 满足 4m=3n,cos= .若 n(t m+n) ,则实数 t 的值为( )(A)4 (B) 4 (C) (D)【答案】B【解析】试题分析:由 ,可设 ,又 ,所以所以 ,故选 B.考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.3.【2016 高考新课标 2 理数】已知向量 ,且 ,则 ( )(A)8 (B)6 (C)6 (D)8【答案】D【解析】试题分析:向量 ,

21、由 得 ,解得 ,故选D.考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量 a(x 1,y 1),b( x2,y 2):结论 几何表示 坐标表示模 |a| |a|夹角 cos cos a b 的充要条件 ab0 x1x2y 1y204.【2016 高考新课标 3 理数】已知向量 , ,则 ( )(A) (B) (C) (D)【答案】A【解析】试题分析:由题意,得 ,所以 ,故选 A考点:向量夹角公式【思维拓展】 (1)平面向量 与 的数量积为 ,其中 是 与 的夹角,要注意夹角的定义和它的取值范围: ;(2)由向量的数量积的性质有 , ,因此,利用平面向量的数量积可以解决与长度、角

22、度、垂直等有关的问题5.【2016 年高考北京理数】设 , 是向量,则“ ”是“ ”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】D【解析】试题分析:由 ,故是既不充分也不必要条件,故选 D.考点:1.充分必要条件;2.平面向量数量积.【名师点睛】由向量数量积的定义 ( 为 , 的夹角) 可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.6.【2016 高考天津理数】已知AB

23、C 是边长为 1 的等边三角形,点 分别是边 的中点,连接 并延长到点 ,使得 ,则 的值为( )(A) (B) (C) (D)【答案】B【解析】试题分析:设 , , , , ,故选 B.考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言“坐标语言”,实质是“ 形” 化为“ 数”向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应

24、灵活选择相应公式求解7.【2016 年高考四川理数】在平面内,定点 A,B,C ,D 满足 = = , = =-2,动点 P,M 满足 =1, = ,则 的最大值是( )(A) (B) (C) (D)【答案】B【解析】试题分析:甴已知易得 .以 为原点,直线 为 轴建立平面直角坐标系,则 设 由已知 ,得 ,又,它表示圆 上点 与点 距离平方的 , ,故选 B考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出,

25、且 ,因此我们采用解析法,即建立直角坐标系,写出 坐标,同时动点 的轨迹是圆, ,因此可用圆的性质得出最值8. 【2016 高考江苏卷】如图,在 中, 是 的中点, 是 上的两个三等分点, ,则 的值是 . 【答案】考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 对于涉及中线向量问题,利用向量加法与减法的平行四边形法则,可以得到一个很实用的结论:9. 【2016 高考浙江理数】已知向量 a、 b, a =1,b =2,若对任意单位向量 e,均有 ae +be ,则 ab 的最大值是 【答案】【解析】试题分析: ,即最大值为考点:平面向量的数量积【易错点睛】在 两边同时平方,转化为 的过程中,很容易忘记右边的 进行平方而导致错误