ImageVerifierCode 换一换
格式:DOC , 页数:53 ,大小:909.61KB ,
资源ID:98247      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-98247.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(二次函数+平行四边形填空选择压轴题练习)为本站会员(梧桐****皮)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

二次函数+平行四边形填空选择压轴题练习

1、二次函数 平行四边形填空选择压轴题练习一选择题(共20小题)1如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个2二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个3如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴

2、交于点A(1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:当x3时,y0;3a+b0;1a;4acb28a;其中正确的结论是()ABCD4如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC则下列结论:abc0;0;acb+1=0;OAOB=其中正确结论的个数是()A4B3C2D15已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(1,0),下列结论:abc0;b24ac=0;a2;4a2b+c0其中正确结论的个数是()A1B2C3D46如图是二次函数y=ax2+bx+c图象的一部分,图象

3、过点A(3,0),对称轴为直线x=1,给出四个结论:b24ac;2a+b=0;a+b+c0;若点B(,y1)、C(,y2)为函数图象上的两点,则y1y2,其中正确结论是()ABCD7如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:2a+b=0;abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1,其中正确的是()ABCD8如图,在RtABC中,ACB=90,AC=BC=6cm,动点P从点A出发,沿AB方向以

4、每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P设Q点运动的时间为t秒,若四边形QPCP为菱形,则t的值为()AB2CD39如图,ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为()AB1CD710在正方形ABCD中,P为AB的中点,BEPD的延长线于点E,连接AE、BE、FAAE交DP于点F,连接BF,FC下列结论:ABEADF; FB=AB;CFDP;FC=EF 其中正确的是()ABCD11如图,矩形ABCD中,BC=2AB,对角线相

5、交于O,过C点作CEBD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:EH=AB;ABG=HEC;ABGHEC;SGAD=S四边形GHCE;CF=BD正确的有()个A2B3C4D512在正方形ABCD中,点E为BC边的中点,点B与点B关于AE对称,BB与AE交于点F,连接AB,DB,FC下列结论:AB=AD;FCB为等腰直角三角形;ADB=75;CBD=135其中正确的是()ABCD13则在ABCD中,BAD的平分线交直线BC于点E,交直线DC于点F若ABC=120,FGCE,FG=CE,分别连接DB、DG、BG,BDG的大小是()A30B45C60D7

6、514如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;AM=MF其中正确结论的个数是()A5个B4个C3个D2个15如图,已知在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB点B到直线AE的距离为EBEDSAPD+SAPB=0.5+其中正确结论的序号是()ABCD16如图,正方形ABCD的对角线相交于O点,BE平分ABO交AO于E点,CFBE于F点,交BO于G点,连结EG、OF则OFG的度数是()

7、A60B45C30D7517如图,在正方形ABCD中,E为AD的中点,DFCE于M,交AC于点N,交AB于点F,连接EN、BM有如下结论:ADFDCE;MN=FN;CN=2AN;SADN:S四边形CNFB=2:5;ADF=BMF其中正确结论的个数为()A2个B3个C4个D5个18如图,正方形ABCD的边长为2,E为线段AB上一点,点M为边AD的中点,EM的延长线与CD的延长线交于点F,MGEF,交CD于N,交BC的延长线于G,点P是MG的中点连接EG、FG下列结论:当点E为边AB的中点时,SEFG=5;MG=EF;当AE=时,FG=;若点E从点A运动到点B,则此过程中点P移动的距离为2其中正确

8、的结论的个数为()A1个B2个C3个D4个19如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FHAE于F,过H作GHBD于G,下列有四个结论:AF=FH,HAE=45,BD=2FG,CEH的周长为定值,其中正确的结论有()ABCD20如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG,CF下列结论:点G是BC中点;FG=FC;SFGC=其中正确的是()ABCD二填空题(共10小题)21如图,抛物线y=ax2+bx+c的对称轴是x=1且过点(,0),有下列结论:abc0;a2b+4c=0;25

9、a10b+4c=0;3b+2c0;abm(amb);其中所有正确的结论是(填写正确结论的序号)22如图,已知直线y=x+3分别交x轴、y轴于点A、B,P是抛物线y=x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=x+3于点Q,则当PQ=BQ时,a的值是23抛物线y=ax2+bx+c(a,b,c为常数,且a0)经过点(1,0)和(m,0),且1m2,当x1时,y随着x的增大而减小下列结论:abc0;a+b0;若点A(3,y1),点B(3,y2)都在抛物线上,则y1y2;a(m1)+b=0;若c1,则b24ac4a其中结论错误的是(只填写序号)24二次函数y=ax2+bx

10、+c的图象如图所示,给出下列结论:2a+b0;bac;若1mn1,则m+n;3|a|+|c|2|b|其中正确的结论是(写出你认为正确的所有结论序号)25如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF连接CF交BD于点G,连接BE交AG于点H若正方形的边长为2,则线段DH长度的最小值是26如图,四边形ABCD中,A=90,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为27如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立

11、的是(把所有正确结论的序号都填在横线上)DCF=BCD;EF=CF;SBEC=2SCEF;DFE=3AEF28如图,分别以直角ABC的斜边AB,直角边AC为边向ABC外作等边ABD和等边ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,ACB=90,BAC=30给出如下结论:EFAC;四边形ADFE为菱形;AD=4AG;FH=BD其中正确结论的为(请将所有正确的序号都填上)29如图,在ABC中,ABC=90,BD为AC的中线,过点C作CEBD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF若AG=13,CF=6,则四边形BDFG的

12、周长为30正方形ABCD中,对角线AC,BD相交于点O,DE平分ADO交AC于点E,把ADE沿AD翻折,得到ADE,点F是DE的中点,连接AF,BF,EF若AE=则四边形ABFE的面积是二次函数 平行四边形填空选择压轴题练习参考答案与试题解析一选择题(共20小题)1(2016枣庄)如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个【考点】二次函数图象与系数的关系菁优网版权所有【专题】压轴题【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;

13、然后根据x=1时,y0,可得a+b+c0;再根据图象开口向下,可得a0,图象的对称轴为x=,可得,b0,所以b=3a,ab;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得0,所以b24ac0,4acb20,据此解答即可【解答】解:二次函数y=ax2+bx+c图象经过原点,c=0,abc=0正确;x=1时,y0,a+b+c0,不正确;抛物线开口向下,a0,抛物线的对称轴是x=,b0,b=3a,又a0,b0,ab,正确;二次函数y=ax2+bx+c图象与x轴有两个交点,0,b24ac0,4acb20,正确;综上,可得正确结论有3个:故选:C【点评】此题主要考查了二次函数的图象与系数

14、的关系,要熟练掌握,解答此题的关键是要明确:二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)2(2014泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时

15、,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组)菁优网版权所有【专题】压轴题;图表型【分析】根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a0;又x=0时,y=3,所以c=30,所以ac0,故(1)正确;(2)二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,当x1.5时,y的值随x值的增大而减小,故(2)错误;(3)x=3时

16、,y=3,9a+3b+c=3,c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b1)x+c=0的一个根,故(3)正确;(4)x=1时,ax2+bx+c=1,x=1时,ax2+(b1)x+c=0,x=3时,ax2+(b1)x+c=0,且函数有最大值,当1x3时,ax2+(b1)x+c0,故(4)正确故选:B【点评】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度熟练掌握二次函数图象的性质是解题的关键3(2015包头)如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),对称轴为直线x=1,与y轴的交点B在(

17、0,2)和(0,3)之间(包括这两点),下列结论:当x3时,y0;3a+b0;1a;4acb28a;其中正确的结论是()ABCD【考点】二次函数图象与系数的关系菁优网版权所有【专题】压轴题【分析】先由抛物线的对称性求得抛物线与x轴令一个交点的坐标为(3,0),从而可知当x3时,y0;由抛物线开口向下可知a0,然后根据x=1,可知:2a+b=0,从而可知3a+b=0+a=a0;设抛物线的解析式为y=a(x+1)(x3),则y=ax22ax3a,令x=0得:y=3a由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知23a3由4acb28a得c20与题意不符【解答】解:由抛物线的对称性可求得抛

18、物线与x轴令一个交点的坐标为(3,0),当x3时,y0,故正确;抛物线开口向下,故a0,x=1,2a+b=03a+b=0+a=a0,故正确;设抛物线的解析式为y=a(x+1)(x3),则y=ax22ax3a,令x=0得:y=3a抛物线与y轴的交点B在(0,2)和(0,3)之间,23a3解得:1a,故正确;抛物线y轴的交点B在(0,2)和(0,3)之间,2c3,由4acb28a得:4ac8ab2,a0,c2c20c2,与2c3矛盾,故错误故选:B【点评】本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键4(2015孝感)如图,二次函数y=ax

19、2+bx+c(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC则下列结论:abc0;0;acb+1=0;OAOB=其中正确结论的个数是()A4B3C2D1【考点】二次函数图象与系数的关系菁优网版权所有【专题】压轴题;数形结合【分析】由抛物线开口方向得a0,由抛物线的对称轴位置可得b0,由抛物线与y轴的交点位置可得c0,则可对进行判断;根据抛物线与x轴的交点个数得到b24ac0,加上a0,则可对进行判断;利用OA=OC可得到A(c,0),再把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,两边除以c则可对进行判断;设A(x1,0),B(x2,0),则OA=x1,OB=x2

20、,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a0)的两根,利用根与系数的关系得到x1x2=,于是OAOB=,则可对进行判断【解答】解:抛物线开口向下,a0,抛物线的对称轴在y轴的右侧,b0,抛物线与y轴的交点在x轴上方,c0,abc0,所以正确;抛物线与x轴有2个交点,=b24ac0,而a0,0,所以错误;C(0,c),OA=OC,A(c,0),把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,acb+1=0,所以正确;设A(x1,0),B(x2,0),二次函数y=ax2+bx+c(a0)的图象与x轴交于A,B两点,x1和x2是方程ax2+bx+c=0(a0

21、)的两根,x1x2=,OAOB=,所以正确故选:B【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点5(2

22、015潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(1,0),下列结论:abc0;b24ac=0;a2;4a2b+c0其中正确结论的个数是()A1B2C3D4【考点】二次函数图象与系数的关系菁优网版权所有【专题】压轴题【分析】首先根据抛物线开口向上,可得a0;然后根据对称轴在y轴左边,可得b0;最后根据抛物线与y轴的交点在x轴的上方,可得c0,据此判断出abc0即可根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得=0,即b24a(c+2)=0,b24ac=8a0,据此解答即可首先根据对称轴x=1,可得b=2a,然后根据b24ac=8a,确定出a的取值范围即

23、可根据对称轴是x=1,而且x=0时,y2,可得x=2时,y2,据此判断即可【解答】解:抛物线开口向上,a0,对称轴在y轴左边,b0,抛物线与y轴的交点在x轴的上方,c+22,c0,abc0,结论不正确;二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,=0,即b24a(c+2)=0,b24ac=8a0,结论不正确;对称轴x=1,b=2a,b24ac=8a,4a24ac=8a,a=c+2,c0,a2,结论正确;对称轴是x=1,而且x=0时,y2,x=2时,y2,4a2b+c+22,4a2b+c0结论正确综上,可得正确结论的个数是2个:故选:B【点评】此题主要考查了二次函数的图象与系数的关

24、系,要熟练掌握,解答此题的关键是要明确:二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c)6(2015恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),对称轴为直线x=1,给出四个结论:b24ac;2a+b=0;a+b+c0;若点B(,y1)、C(,y2)为函数图象上的两点,则y1y2,其中正确结论是()ABCD【考点

25、】二次函数图象与系数的关系菁优网版权所有【专题】压轴题【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【解答】解:抛物线的开口方向向下,a0;抛物线与x轴有两个交点,b24ac0,即b24ac,故正确由图象可知:对称轴x=1,2ab=0,故错误;抛物线与y轴的交点在y轴的正半轴上,c0由图象可知:当x=1时y=0,a+b+c=0;故错误;由图象可知:若点B(,y1)、C(,y2)为函数图象上的两点,则y1y2,故正确故选B【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+b

26、x+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定7(2015日照)如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:2a+b=0;abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1,其中正确的是()ABCD【考点】二次函数图象与系数的关系;抛物线与x轴的交点菁优网版权所有【专题】压轴题;数形结合【分析】根据抛物线对称轴方程对进行判断;由抛物线开口方向得到a0,由对称轴位

27、置可得b0,由抛物线与y轴的交点位置可得c0,于是可对进行判断;根据顶点坐标对进行判断;根据抛物线的对称性对进行判断;根据函数图象得当1x4时,一次函数图象在抛物线下方,则可对进行判断【解答】解:抛物线的顶点坐标A(1,3),抛物线的对称轴为直线x=1,2a+b=0,所以正确;抛物线开口向下,a0,b=2a0,抛物线与y轴的交点在x轴上方,c0,abc0,所以错误;抛物线的顶点坐标A(1,3),x=1时,二次函数有最大值,方程ax2+bx+c=3有两个相等的实数根,所以正确;抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点为(2,0),所以错误;抛物线y

28、1=ax2+bx+c与直线y2=mx+n(m0)交于A(1,3),B点(4,0)当1x4时,y2y1,所以正确故选:C【点评】本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛

29、物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点8(2015泰安模拟)如图,在RtABC中,ACB=90,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P设Q点运动的时间为t秒,若四边形QPCP为菱形,则t的值为()AB2CD3【考点】菱形的性质;翻折变换(折叠问题)菁优网版权所有【专题】压轴题;动点型【分析】首先连接PP交BC于O,根据菱形的性质可得PPCQ,可证出POAC,根据平行线分线段成比例可得 =,再表示出AP、AB、CO的长,代入比例式可以

30、算出t的值【解答】解:连接PP交BC于O,若四边形QPCP为菱形,PPQC,POQ=90,ACB=90,POAC,=,设点Q运动的时间为t秒,AP=t,QB=t,QC=6t,CO=3,AC=CB=6,ACB=90,AB=6,=,解得:t=2,故选:B【点评】此题主要考查了菱形的性质,勾股定理,平行线分线段成比例,关键是熟记平行线分线段成比例定理的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例推出比例式=,再表示出所需要的线段长代入即可9(2014枣庄)如图,ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF

31、,则线段EF的长为()AB1CD7【考点】三角形中位线定理;等腰三角形的判定与性质菁优网版权所有【专题】几何图形问题;压轴题【分析】由等腰三角形的判定方法可知AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为CBG的中位线,利用中位线的性质即可求出线段EF的长【解答】解:AD是其角平分线,CGAD于F,AGC是等腰三角形,AG=AC=3,GF=CF,AB=4,AC=3,BG=1,AE是中线,BE=CE,EF为CBG的中位线,EF=BG=,故选:A【点评】本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半10(2014江阴市二模)

32、在正方形ABCD中,P为AB的中点,BEPD的延长线于点E,连接AE、BE、FAAE交DP于点F,连接BF,FC下列结论:ABEADF; FB=AB;CFDP;FC=EF 其中正确的是()ABCD【考点】正方形的性质;三角形内角和定理;全等三角形的判定与性质;直角三角形斜边上的中线;等腰直角三角形菁优网版权所有【专题】压轴题【分析】根据已知和正方形的性质推出EAB=DAF,EBA=ADP,AB=AD,证ABEADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证AMB=FMB,BM=BM,AM=MF,推出ABMFBM即可;求出FDC=EBF,推出BEFDFC即可【解答】解:正方形

33、ABCD,BEED,EAFA,AB=AD=CD=BC,BAD=EAF=90=BEF,APD=EPB,EAB=DAF,EBA=ADP,AB=AD,ABEADF,正确;AE=AF,BE=DF,AEF=AFE=45,取EF的中点M,连接AM,AMEF,AM=EM=FM,BEAM,AP=BP,AM=BE=DF,EMB=EBM=45,AMB=90+45=135=FMB,BM=BM,AM=MF,ABMFBM,AB=BF,正确;BAM=BFM,BEF=90,AMEF,BAM+APM=90,EBF+EFB=90,APF=EBF,ABCD,APD=FDC,EBF=FDC,BE=DF,BF=CD,BEFDFC,C

34、F=EF,DFC=FEB=90,正确;正确;故选D【点评】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键11(2013渝中区校级模拟)如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CEBD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:EH=AB;ABG=HEC;ABGHEC;SGAD=S四边形GHCE;CF=BD正确的有()个A2B3C4D5【考点】矩形的性质;三角形的面积;全等三角形的判定与性质菁优网版权所有【专

35、题】综合题;压轴题【分析】根据BC=2AB,H为BC中点,可得ABH为等腰直角三角形,HE=BH=HC,可得CEH为等腰三角形,又BCD=90,CEBD,利用互余关系得出角的相等关系,根据基本图形判断全等三角形,特殊三角形进行判断【解答】解:在BCE中,CEBD,H为BC中点,BC=2EH,又BC=2AB,EH=AB,正确;由可知,BH=HEEBH=BEH,又ABG+EBH=BEH+HEC=90,ABG=HEC,正确;由AB=BH,ABH=90,得BAG=45,同理:DHC=45,EHCDHC=45,ABGHEC,错误;作AMBD,则AM=CE,AMDCEB,ADBC,ADGHGB,=2,即A

36、BG的面积等于BGH的面积的2倍,根据已知不能推出AMG的面积等于ABG的面积的一半,即SGADS四边形GHCE,错误ECH=CHF+F=45+F,又ECH=CDE=BAO,BAO=BAH+HAC,F=HAC,CF=BD,正确正确的有三个故选B【点评】此题主要考查了等腰三角形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定解答该题的关键是证明等腰三角形,全等三角形本题综合性较强,难度比较大12(2014市中区一模)在正方形ABCD中,点E为BC边的中点,点B与点B关于AE对称,BB与AE交于点F,连接AB,DB,FC下列结论:AB=AD;FCB为等腰直角三角形;ADB=

37、75;CBD=135其中正确的是()ABCD【考点】正方形的性质;轴对称的性质菁优网版权所有【专题】几何综合题;压轴题【分析】根据轴对称图形的性质,可知ABF与ABF关于AE对称,即得AB=AD;连接EB,根据E为BC的中点和线段垂直平分线的性质,求出BBC为直角三角形;假设ADB=75成立,则可计算出ABB=60,推知ABB为等边三角形,BB=AB=BC,与BBBC矛盾;根据ABB=ABB,ABD=ADB,结合周角定义,求出DBC的度数【解答】解:点B与点B关于AE对称,ABF与ABF关于AE对称,AB=AB,AB=AD,AB=AD故正确;如图,连接EB则BE=BE=EC,FBE=FBE,E

38、BC=ECB则FBE+EBC=FBE+ECB=90,即BBC为直角三角形FE为BCB的中位线,BC=2FE,BEFABF,=,即=,故FB=2FEBC=FBFCB为等腰直角三角形故正确设ABB=ABB=x度,ABD=ADB=y度,则在四边形ABBD中,2x+2y+90=360,即x+y=135度又FBC=90,DBC=36013590=135故正确假设ADB=75成立,则ABD=75,ABB=ABB=3601357590=60,ABB为等边三角形,故BB=AB=BC,与BBBC矛盾,故错误故选:B【点评】此题考查了正方形的性质、等腰直角三角形的判定和性质,等边三角形的性质及反证法等知识,综合性

39、很强,值得关注13(2012淄博模拟)则在ABCD中,BAD的平分线交直线BC于点E,交直线DC于点F若ABC=120,FGCE,FG=CE,分别连接DB、DG、BG,BDG的大小是()A30B45C60D75【考点】平行四边形的性质;全等三角形的判定与性质菁优网版权所有【专题】压轴题【分析】分别连接GB、GC,求证四边形CEGF是平行四边形,再求证ECG是等边三角形由ADBC及AF平分BAD可得BAE=AEB,则可证得BEGDCG,然后即可求得答案【解答】解:延长AB、FG交于H,连接HDADGF,ABDF,四边形AHFD为平行四边形,ABC=120,AF平分BAD,DAF=30,ADC=120,DFA=30,DAF为等腰三角形,AD=DF,平行四边形AHFD为菱形,ADH,DHF为全等的等边三角形,DH=DF,BHD=GFD=60,FG=CE,CE=CF,CF=BH,BH=GF,在BHD和GFD中,BHDGFD(SAS),BDH=GDF,BDG=BDH+HDG=GDF+HDG=60故选C【点评】此题主要考查平行四边形的性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用14(2015滨湖区二模)如图,已知E、F分别为正方形ABCD