ImageVerifierCode 换一换
格式:PPT , 页数:37 ,大小:1.34MB ,
资源ID:9702      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-9702.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【人教版】2018学年七年级数学上册《4.2.2线段长短的比较与运算》ppt课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【人教版】2018学年七年级数学上册《4.2.2线段长短的比较与运算》ppt课件

1、,导入新课,讲授新课,当堂练习,课堂小结,4.2 直线、射线、线段,第四章 几何图形初步,第2课时 线段长短的比较与运算,1. 会用尺规画一条线段等于已知线段,会比较两条线段的长短. (重点) 2. 理解线段等分点的意义. 3. 能够运用线段的和、差、倍、分关系求线段的长度. (重点、难点) 4. 体会文字语言、符号语言和图形语言的相互转化. 5. 了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用. (难点),导入新课,情境引入,观察这三组图形,你能比较出每组图形中线段 a 和 b 的长短吗?,很多时候,眼见未必为实. 准确比较线段的长短还需要更加严谨的办法.,(1),(

2、2),(3),a,b,a,a,b,b,讲授新课,合作探究,做手工时,在没有刻度尺的条件下,若想从较长的木棍上截下一段,使截下的木棒等于另一根短木棒的长,我们常采用以上办法.,画在黑板上的线段是无法移动的,在只有圆规和无刻度的直尺的情况下,请大家想想办法,如何再画一条与它相等的线段?,思考:,小提示:在可打开角度的最大范围内,圆规可截取任意长度,相当于可以移动的“小木棍”.,作一条线段等于已知线段,已知:线段 a,作一条线段 AB,使 AB=a.,第一步:用直尺画射线 AF;,第二步:用圆规在射线 AF 上截取 AB = a., 线段 AB 为所求.,a,A F,a,B,在数学中,我们常限定用无

3、刻度的直尺和圆规作图,这就是尺规作图.,你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?,讨论:,比较两个同学高矮的方法:,叠合法.,让两个同学站在同一平地上,脚底平齐,观看 两人的头顶,直接比出高矮.,用卷尺分别度量出两个同学的身高,将所得的 数值进行比较.,度量法.,B,试比较线段AB,CD的长短.,(1) 度量法;,(2) 叠合法,将其中一条线段“移”到另一条线段上,使其一端点与另一线段的一端点重合,然后观察两条线段另外两个端点的位置作比较.,(A),尺规作图,1. 若点 A 与点 C 重合,点 B 落在C,D之间,那么 AB CD.,叠合法结论:

4、,2. 若点 A 与点 C 重合,点 B 与 点 D ,那么 AB = CD.,3. 若点 A 与点 C 重合,点 B 落在 CD 的延长线上,那么 AB CD.,重合,在直线上画出线段 AB=a ,再在 AB 的延长线上画线段 BC=b,线段 AC 就是 与 的和,记作 AC= . 如果在 AB 上画线段 BD=b,那么线段 AD 就是 与 的差,记作AD= .,A,B,C,a+b,a-b,画一画,a,b,a+b,a,b,a-b,1. 如图,点B,C在线段 AD 上则AB+BC=_; ADCD=_;BC _ _= _ _.,AC,AC,AC,AB,BD,CD,做一做,2. 如图,已知线段a,

5、b,画一条线段AB,使 AB=2ab.,A,B,2ab,2a,b,在一张纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点处于线段的什么位置?,A,B,M,A,B,M,如图,点 M 把线段 AB 分成相等的两条线段AM 与 BM,点 M 叫做线段 AB 的中点. 类似地,还有线段的三等分点、四等分点等.,线段的三等分点,线段的四等分点,M 是线段 AB 的中点,几何语言: M 是线段 AB 的中点 AM = MB = AB ( 或 AB = 2 AM = 2 MB ),反之也成立: AM = MB = AB( 或 AB = 2 AM = 2 AB ) M 是线段 AB 的中点,点 M

6、 , N 是线段 AB 的三等分点:,AM = MN = NB = _ AB,(或 AB = _AM = _ MN = _NB),例1 若 AB = 6cm,点 C 是线段 AB 的中点,点 D是线段 CB 的中点,求:线段 AD 的长是多少?,解: C 是线段 AB 的中点,, D 是线段 CB 的中点,,典例精析, AC = CB = AB = 6= 3 (cm)., CD = CB = 3=1.5 (cm)., AD =AC + CD = 3 + 1.5 = 4.5 (cm).,例2 如图,B、C是线段AD上两点,且AB:BC:CD= 3:2:5,E、F分别是AB、CD的中点,且EF=2

7、4,求线段AB、BC、CD的长,解析:根据已知条件AB:BC:CD=3:2:5,不妨设AB=3x,BC =2x,CD=5x,然后运用线段的和差倍分,用含x的代数式表示EF的长,从而得到一个关于x的一元一次方程,解方程,得到x的值,即可得到所求各线段的长.,解:设AB=3x,BC=2x,CD=5x,,因为E、F分别是AB、CD的中点,,所以,所以EF=BE+BC+CF=,因为EF=24,所以6x=24,解得x=4.,所以AB=3x=12,BC=2x=8,CD=5x=20.,方法总结:求线段的长度时,当题目中涉及到线段长度的比例或倍分关系时,通常可以设未知数,运用方程思想求解.,变式训练:,如图,

8、已知线段AB和CD的公共部分BD= AB = CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长,解析:根据已知条件,不妨设BD=xcm,则AB= 3xcm,CD=4xcm,易得AC=6xcm.在由线段中点的定义及线段的和差关系,用含x的代数式表示EF的长,从而得到一个一元一次方程,求解即可.,解:设BD=xcm,则AB=3xcm,CD=4xcm,AC =6xcm,,因为E、F分别是AB、CD的中点,,所以,所以EF=AC-AE-CF=,所以AB=3xcm=12cm,CD=4xcm=16cm.,因为EF=10,所以 x=10,解得x=4.,例3 A,B,C三点在同一直线上,线

9、段AB=5cm,BC=4cm,那么A,C两点的距离是( ) A1cm B9cm C1cm或9cm D以上答案都不对,解析:分以下两种情况进行讨论:当点C在AB之间上,故AC=AB-BC=1cm;当点C在AB的延长线上时,AC=AB+BC=9cm,C,方法总结:无图时求线段的长,应注意分类讨论,一般分以下两种情况:点在某一线段上;点在该线段的延长线.,变式训练:,已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,F分别是线段AB,BC的中点,则线段EF的长为( ) A21cm或4cm B20.5cm C4.5cm D20.5cm或4.5cm,D,1. 如图,点C 是线段AB 的中

10、点,若 AB = 8 cm,则 AC = cm.,4,C,练一练,A,C,B,3. 如图,线段 AB =4 cm,BC = 6 cm,若点D 为线段 AB 的中点,点 E 为线段 BC 的中点,求线段 DE 的长.,答案:DE 的长为 5 cm.,如图:从 A 地到 B 地有四条道路,除它们外能否再修一条从 A 地到 B 地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.,A,B,议一议,经过比较,我们可以得到一个关于线段的基本事实:,两点的所有连线中,线段最短.,连接两点间的线段的长度,叫做,这两点的距离.,A,B,你能举出这条性质在生活中的应用吗?,简单说成: 两点之间,线

11、段最短.,两点之间线段最短,1. 如图,这是 A,B 两地之间的公路,在公路工程改造计划时,为使 A,B 两地行程最短,应如何设计线路?请在图中画出,并说明理由.,想一想,.,2. 把原来弯曲的河道改直,A,B 两地间的河道长度有什么变化?,A,B,A,B 两地间的河道长度变短.,1. 如图,AB+BC AC,AC+BC AB,AB+AC BC (填“”“”或“=”). 其中蕴含的数学道理是 .,两点之间线段最短,练一练,A,B,C,2. 在一条笔直的公路两侧,分别有 A,B 两个村庄, 如图,现在要在公路 l 上建一个汽车站 C,使汽车站到 A,B 两村庄的距离之和最小,请在图中画出汽车站的

12、位置.,C,A,B,l,1. 下列说法正确的是 ( )A. 两点间距离的定义是指两点之间的线段B. 两点之间的距离是指两点之间的直线C. 两点之间的距离是指连接两点之间线段的长度D. 两点之间的距离是两点之间的直线的长度,2. 如图,AC = DB,则图中另外两条相等的线段为_.,当堂练习,C,ADBC,3.已知线段 AB = 6 cm,延长 AB 到 C,使 BC = 2 AB,若 D 为 AB 的中点,则线段 DC 的长为_.,15 cm,4.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若BC=5,则AC=_,11或1,5. 如图:AB = 4 cm,BC = 3 cm

13、,如果点O 是线段 AC 的中点求线段 OB 的长度,解: AC = AB + BC = 4+3=7 (cm),点O 为线段 AC 的中点, OC = AC= 7 = 3.5 (cm), OB = OCBC = 3.53 = 0.5 (cm),6.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6,求CM和AD的长,AD=10x=20 ,解:设AB=2x,BC=5x,CD=3x,所以AD=AB+BC+CD=10x.,因为M是AD的中点,,所以AM=MD=5x,,所以BM=AM-AB=3x.,因为BM=6,,即3x=6,所以x=2.,故CM=MD-CD=2x=4,,课堂小结,线段长短的比较与运算,线段长短的比较,基本事实,线段的和差,度量法,叠合法,中点,两点间的距离,思想方法,方程思想,分类思想,基本作图,