ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:1.08MB ,
资源ID:96864      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-96864.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题01 过“三关”破解概率与统计问题(第六篇)-2019年高考数学压轴题命题区间探究与突破(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题01 过“三关”破解概率与统计问题(第六篇)-2019年高考数学压轴题命题区间探究与突破(原卷版)

1、2019高考数学压轴题命题区间探究与突破专题第六篇 概率与统计专题01 过“三关”破解概率与统计问题一方法综述概率与统计应用性问题是历年高考命题的主要题型之一,解答这类问题的关键是能阅读、理解陈述的材料,深刻理解题意,学会文字语言向数学的符号语言的转化,能结合所学知识解决问题解答应用问题要过三关:一是事理关,即读懂题意,需要一定的阅读理解能力;二是文理关,即把文字语言转化为数学的符号语言;三是数理关,即构建相应的数学模型,构建之后还需要扎实的基础知识和较强的数理能力除以上过“三关”外,对于概率与统计应用问题还应再过三关,即文字关、图表关、计算关本专题重点说明破解概率与统计问题的方法与技巧.二解

2、题策略类型一 过“文字关”抓关键语句,破干扰信息【例1】【2018年理新课标I卷】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立 (1)记20件产品中恰有2件不合格品的概率为,求的最大值点(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用 (i)若不对该箱余

3、下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【指点迷津】1.此类问题文字叙述较长,解答问题应过文字关,其技巧是:(1)快速了解“无关信息”;(2)仔细阅读题中重要信息,把握信息所给内容(如本例数字、字母等);(3)明确题目所求内容2. 本题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系

4、得到结论.【举一反三】【2018届【衡水金卷】四省第三次大联考】2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.某地方体育台组织球迷对德国、西班牙、阿根廷、巴西四支热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参与竞猜.(1)若三人中每个人可以选择任何一支球队,且选择每个球队都是等可能的,求四支球队中恰好有两支球队有人选择的概率;(2)若三人中有一名女球迷,假设女球迷选择德国队的概率为,男球迷选择德国队的概率为,记为三人中选择德国队的人数,求的分布列和数学期望.来源:类型二 过“图表关”会转换信息,思解题方法【例2】【2018年理北京卷】电影公司随机收集了电影的

5、有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值假设所有电影是否获得好评相互独立来源:Z#X#X#K()从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;()从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;()假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6)写出方差,的

6、大小关系【指点迷津】从所给表格中正确提取解题所需要的信息是解决此类问题的关键【举一反三】【2018年全国卷理】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2

7、)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:, 类型三 过“计算关”明算理,精计算,防失分【例3】【山东省济南市2018届三模】近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内, 与(均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即

8、可,不必说明理由);(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的 人次;来源:(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下车队为缓解周边居民出行压力,以万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为万元.已知该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.预计该车队每辆车每个月有万人次乘车,根据给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素

9、的条件下,按照上述收费标准,假设这批车需要年才能开始盈利,求的值.参考数据:其中其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为: .【指点迷津】(1)在计算K2的值时应仔细,计算中易出错,要明确公式中n,a,b,c,d所表示的值(2)利用最小二乘法求“”时,应注意避免计算出错(3)计算随机变量的概率,往往涉及排列组合计算,易于出错,应特别细心.【举一反三】【山东省威海市2018届三模】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知之间三组的人数可构成等差数列.(1

10、)求的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替),其中三强化训练1【2018届广东省佛山市检测二】单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测已知随机一人血检呈阳性的概率为 1%

11、,且每个人血检是否呈阳性相互独立.() 根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验现有两个分组方案:方案一: 将 55 人分成 11 组,每组 5 人;方案二:将 55 人分成5组,每组 11 人;试分析哪一个方案工作量更少?() 若该疾病的患病率为 0.4% ,且患该疾病者血检呈阳性的概率为99% ,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据: )2. 【山东省烟台市2018届适应性练习(二)】某房

12、产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合与的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).(3)该房产中介为增加业绩

13、,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.参考数据:,.参考公式:3. 【山东省烟台市2018届适应性练习(二)】某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如

14、果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合与的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假

15、设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.参考数据:,.参考公式:4. 【2018届百校联盟TOP20一月联考】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(3)若从甲、乙两车间12个零件中随机抽取2

16、个零件,用表示乙车间的零件个数,求的分布列与数学期望.5. 某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1个小时走出迷宫;若是2号,3号通道,则分别需要2小时,3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止,令表示走出迷宫所需的时间,求的分布列和数学期望6. 为了调查观众对电视剧风筝的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地大量观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示.(1)从甲地抽取的8名

17、观众和乙地抽取的8名观众中分别各选取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被选取的观众评分低于90分的概率.(2)从甲地抽取出来的8名观众中选取1人,从乙地抽取出来的8名观众中选取2人去参加代表大会,记选取的3人中评分不低于90分的人数为,求的分布列与期望.7.袋中有大小相同的三个球,编号分别为,从袋中每次取出一个球,若取到的球的编号为,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到的球的编号为奇数,则取球停止,取球停止后用表示“所有被取球的编号之和”(1)求的分布列(2)求的数学期望及方差8.深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(

18、即没有用过的球),3个是旧球(即至少用过一次的球)每次训练,都从中任意取出2个球,用完后放回(1)设第一次训练时取到的新球个数为,求的分布列和数学期望;来源:(2)求第二次训练时恰好取到一个新球的概率9.若盒中装有同一型号的灯泡共10个,其中有8个合格品,2个次品来源:Zxxk.Com(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望10【2018届吉林省长春市质量

19、监测(三)】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1组,第2组,第3组,第4 组,第5组,得到的频率分布直方图如图所示(1) 求的值(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求在第1组已被抽到人的前提下,第3组被抽到人的概率;(3)若从所有参与调查的人中任意选出人,记关注“生态文明”的人数为,求的分布列与期望. 10