ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:1.30MB ,
资源ID:96203      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-96203.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题03 三角函数中的参数问题高考数学压轴题典例剖析(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题03 三角函数中的参数问题高考数学压轴题典例剖析(解析版)

1、专题03 三角函数中的参数问题三角函数中的参数范围问题是三角函数中中等偏难的问题,很多同学由于思维方式不对,导致问题难解。此类问题主要分为四类,它们共同的方法是将相位看成整体,结合正弦函数或余弦函数的图像与性质进行求解。【题型示例】1. 已知,函数在上单调递减,则的取值范围是( )A. B. C. D.来源:+网【答案】A【解析】方法一(通法):由,得,又在上递减,所以,解得.方法二(采用特殊值代入检测法):令,则,当时,不合题意,故排除选项D;令,则,当时,故排除选项B,C.2、已知函数在上有且只有两个零点,则实数的取值范围为( )A. B. C. D.【答案】B3、已知函数,若的图象的任意

2、一条对称轴与轴的交点的横坐标都不属于区间,则的取值范围是( )A、 B. C. D.【答案】D【解析】因为,设函数的最小正周期为,易知,所以,由,得的图象的对称轴方程为,依题意有,所以.当时,不合题意;当时,;当时,;当时,不合题意.故的取值范围是,故选D.学-4、已知函数,其中,若且恒成立在区间上有最小值无最大值,则的最大值是( )A.11 B.13 C.15 D.17【答案】C【解析】因为为的零点,为图像的对称轴,所以,即,即,所以.又因为在上有最小值无最大值,所以,即,则的最大值为15,故选C.【专题练习】1、已知函数在上单调递减,则的取值范围是( )A. B. C. D.【答案】C【解

3、析】,所以函数的单调递减区间为,所以,由,可得由,可得所以又,所以,因为,所以所以当时,.2、已知其中,若函数在区间内没有零点,则的取值范围是( )A. B. C. D.【答案】D来源:【解析】,函数在区间内没有零点,则周期,即,时,所以,解得(),因为,当时,当时,所以.3. 将函数的图像向右平移个单位后,所得图像关于轴对称,则的最小值为( )A. B. C. D.【答案】B【解析】函数的图像向右平移个单位后,所得图像对应的解析式为.函数的图像关于轴对称,即.,时,取得最小值为.故选B.4、已知函数的图象过点,若对恒成立,则的最小值为( )A. B. C. D.来源:Zxxk.Com【答案】

4、A【解析】函数图像过点,则,结合可得:,由对恒成立可得:,解得:,令可得:,故选A.5、若函数()在上恰有两个极大值和一个极小值,则的取值范围是( )A. B. C. D.【答案】A【解析】依题意,函数在上恰有两个极大值和一个极小值,由图象可知,亦即,解得6、将函数的图象向右平移个单位,得取函数的图象,若在上为减函数,则的最大值为( )A. B. C. D.【答案】B7、函数在内的值域为,则的取值范围为( )A. B. C. D.【答案】A【解析】函数,当时,来源:结合余弦函数的性质,则,解得,故的取值范围为.故选A.8、已知函数,若且在区间上有最小值,无最大值,则的值为( )A. B. C. D.【答案】C来源:Z_xx_k.Com【解析】,且在区间上有最小值,无最大值,所以直线为的一条对称轴,所以,又,则当时.9、已知函数,若方程在上有且只有四个实根数,则实数的取值范围为( )A. B. C. D.【答案】B【解析】因为,方程在上有且只有四个实数根,即在上有且只有四个实数根,设,因为,所以,所以,解得,故选B.10、已知函数,若对满足的,有,若对任意恒成立,则的取值范围是( )A. B. C. D.【答案】A【解析】因为函数最大,最小值分别为,由和可知,,,由对任意恒成立,得对任意恒成立,所以即,又,所以. 7