ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:748KB ,
资源ID:95847      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-95847.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题2.6 欲证不等恒成立差值函数求值域高考数学解答题压轴题突破讲义(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题2.6 欲证不等恒成立差值函数求值域高考数学解答题压轴题突破讲义(原卷版)

1、【题型综述】利用导数解决不等式恒成立问题的策略:构造差函数根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式具体做法如下:首先构造函数,利用导数研究函数的单调性,求出最值,进而得出相应含参不等式,从而求出参数的取值范围,也可以分离变量,构造函数,直接把问题转化为函数的最值问题来源:证明,时,可以构造函数,如果,则在上是减函数,同时若,由减函数的定义可知,当时,有,即证明【典例指引】例1已知函数,为其导函数.来源:(1) 设,求函数的单调区间;(2) 若,设,为函数图象上不同的两点,且满足,设线段中点的横坐标为 证明:.例2已知定义域为的函数存在两个零点(1)求实数的

2、取值范围;(2)若,求证:例3已知函数(1)求函数的单调区间;(2)若关于的不等式恒成立,证明:且【新题展示】1【2019福建三明期末】已知函数.(1)求证:;(2)若关于的不等式恒成立,求实数的取值范围.2【2019陕西渭南质检】已知函数为常数的图象与y轴交于点A,曲线在点A处的切线斜率为(1)求a的值及函数的单调区间;(2)设,证明:当时,恒成立3【2019北京丰台区上学期期末】已知函数(1)求曲线在点处的切线方程;(2)求证:当时,4【2019广东东莞上学期期末调研】已知函数,(且为常数).(1)当时,求函数的最小值;(2)若对任意都有成立,求实数的取值范围.5【2019北京房山区上学期

3、期末】已知函数(1)求函数的单调区间;(2)设实数使得对恒成立,求的取值范围.6【2019湖北四地七校联考】已知,设,且,记;(1)设,其中,试求的单调区间;(2)试判断弦的斜率与的大小关系,并证明;(3)证明:当时,.【同步训练】1设函数f(x)=lnx+ax2+x+1来源:Z。X。X。K(I)a=2时,求函数f(x)的极值点;()当a=0时,证明xexf(x)在(0,+)上恒成立2已知函数与(1)若曲线与直线恰好相切于点,求实数的值;(2)当时, 恒成立,求实数的取值范围;(3)求证: 3已知函数(1)若是函数的极值点,求曲线在点处的切线方程;(2)若函数在上为单调增函数,求的取值范围;来源:Z*xx*k.Com来源:Zxxk.Com(3)设为正实数,且,求证: 4已知函数,(为常数,其中是自然对数的底数)(1)讨论函数的单调性(2)证明:当且时,函数的图象恒在的图象上方来源:5已知函数.(1)求曲线在点处的切线方程;(2)证明:6设函数,其中(1)当时,求曲线在点处的切线方程;(2)讨论函数的单调性;(3)当,且时证明不等式: 7设函数, (1)当时,求函数的单调区间;(2)当,时,求证:来源:Z。X。X。K来源:8已知函数()()若曲线在点处的切线与轴垂直,求的值;()若函数有两个极值点,求的取值范围;来源:ZXXK()证明:当时, 来源:Zxxk.Com 5