ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:43.33KB ,
资源ID:95132      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-95132.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题8.6直线与椭圆的位置关系 2020年高考数学一轮复习对点提分(文理科通用)原卷版)为本站会员(资**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题8.6直线与椭圆的位置关系 2020年高考数学一轮复习对点提分(文理科通用)原卷版

1、第八篇 平面解析几何专题8.06直线与椭圆的位置关系【考点聚焦突破】考点一中点弦及弦长问题角度1中点弦问题【例11】 已知椭圆y21,(1)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;(2)求过点P且被P点平分的弦所在直线的方程.【规律方法】弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立、消元,利用根与系数关系表示中点;(2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率.角度2弦长问题【例12】 (2019北京朝阳区模拟)已知椭圆C:1(ab0)的左、右焦点分别为F1,F2,且点F1到椭圆C上任意一点的最大距离为3,椭圆C的离心率为.(1)求椭圆C

2、的标准方程;(2)是否存在斜率为1的直线l与以线段F1F2为直径的圆相交于A,B两点,与椭圆相交于C,D,且?若存在,求出直线l的方程;若不存在,说明理由.【规律方法】1.解决直线与椭圆相交的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.2.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB| (k为直线斜率).【训练1】 (1)(一题多解)已知斜率为2的直线经过椭圆1的右焦点F1,与椭圆相交于A,B两点,则弦AB的长为_.(2)(一题多解)(2019广东五校调研)若椭圆的中心在原点,一个焦点为(0,2),直线y3x7

3、与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为()A.1 B.1C.1 D.1考点二最值与范围问题【例2】 (2019天津和平区质检)已知P点坐标为(0,2),点A,B分别为椭圆E:1(ab0)的左、右顶点,直线BP交E于点Q,ABP是等腰直角三角形,且.(1)求椭圆E的方程;(2)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.【规律方法】最值与范围问题的解题思路1.构造关于所求量的函数,通过求函数的值域来获得问题的解.2.构造关于所求量的不等式,通过解不等式来获得问题的解.在解题过程中,一定要深刻挖掘题目中的隐含条件,如判别式大

4、于零等.【易错警示】(1)设直线方程时,应注意讨论斜率不存在的情况.(2)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.【训练2】 已知P(x0,y0)是椭圆C:y21上的一点,F1,F2是C的两个焦点,若0【例3】 人教A版教材选修21第62页习题2.3 B组第4题:已知双曲线x21,过点P(1,1)能否作一条直线l与双曲线交于A,B两点,且点P是线段AB的中点?类型4求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求【例4】 (2017全国卷改编)已知F为抛物线C:y22x的焦点,过F作两条

5、互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|DE|的最小值为_.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(基础题供选用)直线yx2与椭圆1有两个公共点,则m的取值范围是()A.(1,) B.(1,3)(3,)C.(3,) D.(0,3)(3,)2.设直线ykx与椭圆1相交于A,B两点,分别过A,B两点向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于()A. B. C. D.23.(2019长春二检)椭圆4x29y2144内有一点P(3,2),则以P为中点的弦所在直线的斜率为()A. B. C. D.4.(2019青岛调研)

6、已知椭圆C:1(ab0)及点B(0,a),过点B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则ABF()A.60 B.90 C.120 D.1505.斜率为1的直线l与椭圆y21相交于A,B两点,则|AB|的最大值为()A.2 B. C. D.二、填空题6.已知椭圆1(ab0)的右顶点为A(1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为_.7.(2019河南八校联考)已知椭圆C:1(ab0)的右顶点为A,经过原点的直线l交椭圆C于P,Q两点,若|PQ|a,APPQ,则椭圆C的离心率为_.8.已知椭圆的方程是x22y240,则以M(1,1)为中点的弦所在直线方程是_.三、解答

7、题9.(2017北京卷)已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为45.10.(2019上海静安区模拟)已知A,B分别为椭圆C:1(ab0)在x轴正半轴、y轴正半轴上的顶点,原点O到直线AB的距离为,且|AB|.(1)求椭圆C的离心率;(2)直线l:ykxm与圆x2y22相切,并与椭圆C交于M,N两点,若|MN|,求k的值.【能力提升题组】(建议用时:20分钟)11.(2019北京东城区调研)已知圆M:(x2

8、)2y21经过椭圆C:1(m3)的一个焦点,圆M与椭圆C的公共点为A,B,点P为圆M上一动点,则P到直线AB的距离的最大值为()A.25 B.24C.411 D.41012.(2019广州调研)在平面直角坐标系xOy中,直线xy20与椭圆C:1(ab0)相切,且椭圆C的右焦点F(c,0)关于直线l:yx的对称点E在椭圆C上,则OEF的面积为()A. B. C.1 D.213.已知直线l:ykx2过椭圆1(ab0)的上顶点B和左焦点F,且被圆x2y24截得的弦长为L,若L,则椭圆离心率e的取值范围是_.14.在平面直角坐标系xOy中,已知椭圆C:1(ab0)过点P(2,1),且离心率e.(1)求椭圆C的方程;(2)直线l的斜率为,直线l与椭圆C交于A,B两点,求PAB的面积的最大值.【新高考创新预测】15.(思维创新)椭圆1(ab0),直线l1:yx,直线l2:yx,P为椭圆上任意一点,过P作PMl1且与直线l2交于点M,作PNl2且与l1交于点N,若|PM|2|PN|2为定值,则椭圆的离心率为_.14