ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:78.22KB ,
资源ID:95091      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-95091.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题8.7双曲线及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版)为本站会员(资**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题8.7双曲线及其几何性质 2020年高考数学一轮复习对点提分(文理科通用)原卷版

1、第八篇 平面解析几何专题8.07双曲线及其几何性质【考试要求】了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).【知识梳理】1.双曲线的定义平面内与两个定点F1,F2(|F1F2|2c0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0:(1)若ac时,则集合P为空集.2.双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称

2、性对称轴:坐标轴;对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,)实虚轴线段A1A2叫做双曲线的实轴,它的长度|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2a2b2【微点提醒】1.过双曲线的一个焦点且与实轴垂直的弦的长为.2.离心率e.3.等轴双曲线的渐近线互相垂直,离心率等于.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)平面内到点F1(0,4),F2(0,4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到

3、点F1(0,4),F2(0,4)距离之差等于6的点的轨迹是双曲线.()(3)方程1(mn0)表示焦点在x轴上的双曲线.()(4)双曲线(m0,n0,0)的渐近线方程是0.()(5)若双曲线1(a0,b0)与1(a0,b0)的离心率分别是e1,e2,则1(此条件中两条双曲线称为共轭双曲线).()【教材衍化】2.(选修21P62A6改编)经过点A(3,1),且对称轴都在坐标轴上的等轴双曲线方程为_.3.(选修21P61A1改编)已知双曲线x21上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于_.【真题体验】4.(2018浙江卷)双曲线y21的焦点坐标是()A.(,0),(,0)

4、B.(2,0),(2,0)C.(0,),(0,) D.(0,2),(0,2)5.(2017全国卷)双曲线1(a0)的一条渐近线方程为yx,则a_.6.(2018北京卷)若双曲线1(a0)的离心率为,则a_.【考点聚焦】考点一双曲线的定义及应用【例1】 (1)已知F1,F2为双曲线C:x2y22的左、右焦点,点P在C上,|PF1|2|PF2|,则cos F1PF2()A. B. C. D.(2)(2019济南调研)已知圆C1:(x3)2y21和圆C2:(x3)2y29,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为_.【规律方法】1.利用双曲线的定义判定平面内动点的轨迹是否为双曲线,

5、进而根据要求可求出曲线方程;2.在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF1|PF2|2a,运用平方的方法,建立与|PF1|,|PF2|的联系.【训练1】 (1)已知双曲线C:1(a0,b0)的离心率为2,左、右焦点分别为F1,F2,点A在双曲线C上,若AF1F2的周长为10a,则AF1F2的面积为()A.2a2 B.a2C.30a2 D.15a2(2)(2019杭州质检)双曲线C的渐近线方程为yx,一个焦点为F(0,),点A(,0),点P为双曲线第一象限内的点,则当点P的位置变化时,PAF周长的最小值为()A.8 B.10 C.43 D.33考点二双曲线的标准方程【例2】

6、(1)(2017全国卷)已知双曲线C:1(a0,b0)的一条渐近线方程为yx,且与椭圆1有公共焦点,则C的方程为()A.1 B.1C.1 D.1(2)(2018天津卷)已知双曲线1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1d26,则双曲线的方程为()A.1 B.1C.1 D.1【规律方法】1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a,b,c的方程并求出a,b,c的值.2.与双曲线1有相同渐近线时可设所求双曲线方程为(0).【训练2】 (1)(20

7、19海南二模)已知双曲线C:1(a0,b0)过点(,),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C的标准方程是()A.y21 B.1C.x21 D.1(2)已知双曲线的渐近线方程为2x3y0,且双曲线经过点P(,2),则双曲线的方程为_.考点三双曲线的性质角度1求双曲线的渐近线【例31】 (一题多解)(2018全国卷)双曲线1(a0,b0)的离心率为,则其渐近线方程为()A.yx B.yxC.yx D.yx角度2求双曲线的离心率【例32】 (1)(2018全国卷)设F1,F2是双曲线C:1(a0,b0)的左、右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|

8、PF1|OP|,则C的离心率为()A. B.2 C. D.(2)(2018泰安联考)已知双曲线C1:1(a0,b0),圆C2:x2y22axa20,若双曲线C1的一条渐近线与圆C2有两个不同的交点,则双曲线C1的离心率的取值范围是()A. B.C.(1,2) D.(2,)角度3与双曲线有关的范围(最值)问题【例33】 已知M(x0,y0)是双曲线C:y21上的一点,F1,F2是C的两个焦点,若0,b0)的一条渐近线与圆(x2)2(y1)21相切,则C的离心率为()A. B. C. D.(2)已知焦点在x轴上的双曲线1,它的焦点到渐近线的距离的取值范围是_.【反思与感悟】1.与双曲线1 (a0,

9、b0)有公共渐近线的双曲线的方程可设为t (t0).2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程0就是双曲线1 (a0,b0)的两条渐近线方程.【易错防范】1.双曲线方程中c2a2b2,说明双曲线方程中c最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.3.双曲线1 (a0,b0)的渐近线方程是yx,1 (a0,b0)的渐近线方程是yx.【分层训练】【基础巩固题组】(建议用

10、时:40分钟)一、选择题1.(2019郑州模拟)设双曲线1(a0,b0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为()A.yx B.yxC.yx D.y2x2.双曲线C:1(a0,b0)的一个焦点为F,过点F作双曲线C的一条渐近线的垂线,垂足为A,且交y轴于B,若A为BF的中点,则双曲线的离心率为()A. B. C.2 D.3.(2018全国卷)已知双曲线C:1(a0,b0)的离心率为,则点(4,0)到C的渐近线的距离为()A. B.2 C. D.24.(2019天津和平区一模)已知双曲线1(a0,b0)的离心率为,过右焦点F作渐近线的垂线,垂足为M.若FOM的面积为,其中O为坐标原点,则

11、双曲线的方程为()A.x21 B.1C.1 D.15.已知F2,F1是双曲线1(a0,b0)的上、下两个焦点,过F1的直线与双曲线的上下两支分别交于点B,A,若ABF2为等边三角形,则双曲线的渐近线方程为()A.yx B.yxC.yx D.yx二、填空题6.直线l:y2x10过双曲线1(a0,b0)一个焦点且与其一条渐近线平行,则双曲线方程为_.7.设双曲线1的右顶点为A,右焦点为F.过点F且平行于双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_.8.(2019梅州质检)已知双曲线C:1(a0,b0)的左、右焦点分别为F1,F2,O为坐标原点.P是双曲线在第一象限上的点,直线PO,

12、PF2分别交双曲线C左、右支于M,N.若|PF1|2|PF2|,且MF2N60,则双曲线C的离心率为_.三、解答题9.(2019安徽江南十校联考)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,).(1)求双曲线的方程;(2)(一题多解)若点M(3,m)在双曲线上,求证:0.10.设A,B分别为双曲线1(a0,b0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线yx2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使t,求t的值及点D的坐标.【能力提升题组】(建议用时:20分钟)11.(2019河南适应测试)已知

13、F1,F2分别是双曲线1(a0,b0)的左、右焦点,P是双曲线上一点,若|PF1|PF2|6a,且PF1F2的最小内角为,则双曲线的渐近线方程为()A.y2x B.yxC.yx D.yx12.已知点F为双曲线E:1(a0,b0)的右焦点,直线ykx(k0)与E交于不同象限内的M,N两点,若MFNF,设MNF,且,则该双曲线的离心率的取值范围是()A., B.2,1C.2, D.,113.(2018北京卷)已知椭圆M:1(ab0),双曲线N:1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为_;双曲线N的离心率为_.14.已知椭圆C1的方程为y21,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.(1)求双曲线C2的方程;(2)若直线l:ykx与双曲线C2恒有两个不同的交点A和B,且2(其中O为原点),求k的取值范围.【新高考创新预测】15.(多填题)已知椭圆1与双曲线x21的离心率分别为e1,e2,且有公共的焦点F1,F2,则4ee_,若P为两曲线的一个交点,则|PF1|PF2|_.15