ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:122.29KB ,
资源ID:94962      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-94962.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题3.2利用导数研究函数的单调性 2020年高考数学一轮复习对点提分(文理科通用)原卷版)为本站会员(还**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题3.2利用导数研究函数的单调性 2020年高考数学一轮复习对点提分(文理科通用)原卷版

1、第三篇 导数及其应用专题3.02利用导数研究函数的单调性【考试要求】1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小)值的关系.【知识梳理】1.函数的单调性与导数的关系函数yf(x)在某个区间内可导,则:(1)若f(x)0,则f(x)在这个区间内单调递增;(2)若f(x)0,右侧f(x)0x0附近的左侧f(x)0图象

2、形如山峰形如山谷极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点3.函数的最值与导数(1)函数f(x)在a,b上有最值的条件如果在区间a,b上函数yf(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求yf(x)在a,b上的最大(小)值的步骤求函数yf(x)在(a,b)内的极值;将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 【微点提示】1.函数f(x)在区间(a,b)上递增,则f(x)0,“f(x)0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数

3、f(x),“f(x0)0”是“函数f(x)在xx0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f(x)0.()(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),f(x0)0是x0为极值点的充要条件.()(5)函数

4、的最大值不一定是极大值,函数的最小值也不一定是极小值.()【教材衍化】2.(选修22P32A4 改编)如图是f(x)的导函数f(x)的图象,则f(x)的极小值点的个数为()A.1 B.2 C.3 D.43.(选修22P32A5(4)改编)函数f(x)2xxln x的极值是()A. B. C.e D.e2【真题体验】4.(2019青岛月考)函数f(x)cos xx在(0,)上的单调性是()A.先增后减 B.先减后增C.单调递增 D.单调递减5.(2017浙江卷)函数yf(x)的导函数yf(x)的图象如图所示,则函数yf(x)的图象可能是()6.(2019豫南九校考评)若函数f(x)x(xc)2在

5、x2处有极小值,则常数c的值为()A.4 B.2或6C.2 D.6【考点聚焦】考点一求函数的单调区间【例1】 已知函数f(x)ax3x2(aR)在x处取得极值.(1)确定a的值;(2)若g(x)f(x)ex,求函数g(x)的单调减区间.【规律方法】1.求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f(x);(3)在定义域内解不等式f(x)0,得单调递增区间;(4)在定义域内解不等式f(x)0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f(x)xln x,则f(x)()A.在(0,)上递增 B.在(0,)上递减C.在上递增

6、 D.在上递减(2)已知定义在区间(,)上的函数f(x)xsin xcos x,则f(x)的单调递增区间为_.【例2】 (2017全国卷改编)已知函数f(x)ex(exa)a2x,其中参数a0.(1)讨论f(x)的单调性;(2)若f(x)0,求a的取值范围.【规律方法】1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f(x)x3,f(x)3x20(f(x)0在x0时取到),f(x)在R上是增函数.【训练2】 已知f(x)aln x,a

7、R,求f(x)的单调区间.考点三函数单调性的简单应用角度1比较大小或解不等式【例31】 (1)已知函数yf(x)对于任意的x满足f(x)cos xf(x)sin x1ln x,其中f(x)是函数f(x)的导函数,则下列不等式成立的是()A.ffC.ff D.ff(2)已知函数f(x)是函数f(x)的导函数,f(1),对任意实数都有f(x)f(x)0,设F(x),则不等式F(x)的解集为()A.(,1) B.(1,)C.(1,e) D.(e,)角度2根据函数单调性求参数【例32】 (2019日照质检)已知函数f(x)ln x,g(x)ax22x.(1)若函数h(x)f(x)g(x)存在单调递减区

8、间,求实数a的取值范围;(2)若函数h(x)f(x)g(x)在1,4上单调递减,求实数a的取值范围.【规律方法】1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:yf(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)是单调递增的充要条件是对任意的x(a,b)都有f(x)0且在(a,b)内的任一非空子区间上,f(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.

9、【训练3】 (1)已知f(x)是定义在区间(0,)内的函数,其导函数为f(x),且不等式xf(x)2f(x)恒成立,则()A.4f(1)f(2)C.f(1)4f(2)(2)(2019淄博模拟)若函数f(x)kxln x在区间(2,)上单调递增,则k的取值范围是()A.(,2 B.C.2,) D.【反思与感悟】1.已知函数解析式求单调区间,实质上是求f(x)0,f(x)0(f(x)0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对x(a,b),都有f(x)0(f(x)0),且f(x)在(a,b)的任何子区间内都不恒为零.【

10、分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.函数yf(x)的图象如图所示,则yf(x)的图象可能是()2.函数f(x)xexex1的单调递增区间是()A.(,e) B.(1,e)C.(e,) D.(e1,)3.(2019青岛二中调研)若函数f(x)x312x在区间(k1,k1)上不是单调函数,则实数k的取值范围是()A.k3或1k1或k3B.不存在这样的实数kC.2k2D.3k1或1kf(e)f(3) B.f(3)f(e)f(2)C.f(3)f(2)f(e) D.f(e)f(3)f(2)5.(2019济宁一中模拟)函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,

11、则f(x)2x4的解集为()A.(1,1) B.(1,)C.(,1) D.(,)二、填空题6.已知函数f(x)(x22x)ex(xR,e为自然对数的底数),则函数f(x)的单调递增区间为_.7.若函数f(x)ax33x2x恰好有三个单调区间,则实数a的取值范围是_.8.若函数f(x)x3x22ax在上存在单调递增区间,则a的取值范围是_.三、解答题9.已知函数f(x)ln x,其中aR,且曲线yf(x)在点(1,f(1)处的切线垂直于直线yx.(1)求a的值;(2)求函数f(x)的单调区间.10.(2019成都七中检测)设函数f(x)ax2aln x,g(x),其中aR,e2.718为自然对数

12、的底数.(1)讨论f(x)的单调性;(2)证明:当x1时,g(x)0.【能力提升题组】(建议用时:20分钟)11.(2017山东卷)若函数exf(x)(e2.718 28是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是()A.f(x)2x B.f(x)x2C.f(x)3x D.f(x)cos x12.(2019上海静安区调研)已知函数f(x)xsin xcos xx2,则不等式f(ln x)f2f(1)的解集为()A.(e,) B.(0,e)C.(1,e) D.13.若函数f(x)xsin 2xasin x在(,)单调递增,则a的取值范围是_.14.已知函数f(x)aln xax3(aR).(1)求函数f(x)的单调区间;(2)若函数yf(x)的图象在点(2,f(2)处的切线的倾斜角为45,对于任意的t1,2,函数g(x)x3x2在区间(t,3)上总不是单调函数,求m的取值范围.【新高考创新预测】15.(多填题)已知函数f(x)x3mx2nx2的图象过点(1,6),函数g(x)f(x)6x的图象关于y轴对称.则m_,f(x)的单调递减区间为_.12