ImageVerifierCode 换一换
格式:PPTX , 页数:36 ,大小:610.91KB ,
资源ID:9428      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-9428.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【人教版】2018年秋九年级数学上册《22.1.2二次函数y=ax2的图象和性质》ppt课件)为本站会员(Z**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【人教版】2018年秋九年级数学上册《22.1.2二次函数y=ax2的图象和性质》ppt课件

1、第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,22.1.2 二次函数y=ax2的图象和性质,学习目标,1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax的图象,概括出图象的特点.(难点) 3.掌握形如y=ax的二次函数图象的性质,并会应用.(难点),导入新课,情境引入,讲授新课,例1 画出二次函数y=x2的图象.,9,4,1,0,1,9,4,典例精析,1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:,2. 描点:根据表中x,y的数值在坐标平面中描点(x,y),3. 连线:如图,再用平滑曲线顺次连接各点,就得到y = x2 的图象

2、,-3,3,o,3,6,9,当取更多个点时,函数y=x2的图象如下:,x,y,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.,这条抛物线关于y轴对称,y轴就是它的对称轴.,对称轴与抛物线的交 点叫做抛物线的顶点.,练一练:画出函数y=-x2的图象.,根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.,x,o,y=x2,议一议,1.yx2是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点,y,说说二次函数y=-x2的图象有哪些性质,与同伴交流.,o,x,y,y=-x2,1.y-x2是

3、一条抛物线; 2.图象开口向下; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最高点,1. 顶点都在原点;,3.当a0时,开口向上;当a0时,开口向下,二次函数y=ax2 的图象性质:,知识要点,2. 图像关于y轴对称;,观察下列图象,抛物线y=ax2与y=-ax2(a0)的关系是什么?,二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.,x,y,O,y=ax2,y=-ax2,交流讨论,二次函数y=ax2的性质,问题1:观察图形,y随x的变化如何变化?,对于抛物线 y = ax 2 (a0)当x0时,y随x取值的增大而增大;当x0时,y随x取值的增大而减小.,知识要

4、点,问题2:观察图形,y随x的变化如何变化?,对于抛物线 y = ax 2 (a0)当x0时,y随x取值的增大而减小;当x0时,a越大,开口越小.,练一练:在同一直角坐标系中,画出函数 的图象,-8,-4.5,-2,-0.5,0,-8,-4.5,-2,-0.5,-8,-4.5,2,0.5,0,8,4.5,2,0.5,当a0 ,m2+m=2 ,解得:m1=2, m2=1,由得:m1, m=1,此时,二次函数为: y=2x2.,典例精析,例2:已知二次函数y=x2 (1)判断点A(2,4)在二次函数图象上吗? (2)请分别写出点A关于x轴的对称点B的坐标,关于y轴的对称点C的坐标,关于原点O的对称

5、点D的坐标; (3)点B、C、D在二次函数y=x2的图象上吗?在二次函数y=x2的图象上吗?,典例精析,(1)判断点A(2,4)在二次函数图象上吗?,解:(1)当x=2时,y=x2=4, 所以A(2,4)在二次函数图象上;,(2)请分别写出点A关于x轴的对称点B的坐标,关于y轴的对称点C的坐标,关于原点O的对称点D的坐标;,(2)点A关于x轴的对称点B的坐标为(2,-4),点A关于y轴的对称点C的坐标为(-2,4),点A关于原点O的对称点D的坐标为(-2,-4);,(3)点B、C、D在二次函数y=x2的图象上吗?在二次函数y=x2的图象上吗?,当x=2时,y=x2=4, 所以C点在二次函数y=

6、x2的图象上; 当x=2时,y=x2=4, 所以B点在二次函数y=x2的图象上; 当x=2时,y=x2=4, 所以D点在二次函数y=x2的图象上,已知 是二次函数,且当x0时,y随x增大而增大,则k= .,分析: 是二次函数,即二次项的系数不为0,x的指数等于2.又因当x0时,y随x增大而增大,即说明二次项的系数大于0.因此,,解得 k=2,2,练一练,例3. 已知二次函数y2x2. (1)若点(2,y1)与(3,y2)在此二次函数的图象上,则 y1_ y2;(填“”“”或“”); (2)如图,此二次函数的图象经过点(0,0),长方形 ABCD的顶点A、B在x轴上,C、D恰好在二次函数的 图象

7、上,B点的横坐标为2,求图中阴影部分的面积 之和,1,4.说出下列抛物线的开口方向、对称轴和顶点:,向上,向下,向下,向上,y轴,y轴,y轴,y轴,(0,0),(0,0),(0,0),(0,0),O,5.若抛物线y=ax2 (a 0),过点(-1,2).(1)则a的值是 ;(2)对称轴是 ,开口 .(3)顶点坐标是 ,顶点是抛物线上的最 值 .抛物线在x轴的 方(除顶点外).(4) 若A(x1,y1),B(x2,y2)在这条抛物线上,且x1x2,6.已知二次函数y=x2,若xm时,y最小值为0,求实数m的取值范围,解:二次函数y=x2,当x=0时,y有最小值,且y最小值=0,当xm时,y最小值=0,m0,7.已知:如图,直线y3x4与抛物线yx2交于A、B两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积,解:由题意得 解得 所以此两函数的交点坐标为A(4,16)和B(1,1) 直线y3x4与y轴相交于点C(0,4),即CO4. SACO CO48,SBOC 412, SABOSACOSBOC10.,课堂小结,二次函数y=ax2的图象及性质,画法,描点法,以对称轴为中心对称取点,图象,抛物线,轴对称图形,性质,重点关注4个方面,开口方向及大小,对称轴,顶点坐标,增减性,见学练优本课时练习,课后作业,