1、21.2.1 配方法,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 直接开平方法,学习目标,1.会把一元二次方程降次转化为两个一元一次方程. (难点) 2.运用开平方法解形如x2=p或(x+n)2=p (p0)的方程. (重点),1.如果 x2=a,则x叫做a的 .,导入新课,复习引入,平方根,2.如果 x2=a(a 0),则x= .,3.如果 x2=64 ,则x= .,8,4.任何数都可以作为被开方数吗?,负数不可以作为被开方数.,讲授新课,问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱
2、长吗?,解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程,106x2=1500,,由此可得,x2=25,开平方得,即x1=5,x2=5.,因棱长不能是负值,所以正方体的棱长为5dm,x=5,,试一试: 解下列方程,并说明你所用的方法,与同伴交流.,(1) x2=4,(2) x2=0,(3) x2+1=0,解:根据平方根的意义,得 x1=2, x2=-2.,解:根据平方根的意义,得 x1=x2=0.,解:根据平方根的意义,得x2=-1, 因为负数没有平方根,所以原方程无解.,(2)当p=0 时,方程(I)有两个相等的实数根 =0;,(3)当p0 时,根据平方根的意义,
3、方程(I)有两个不等 的实数根 , ;,例1 利用直接开平方法解下列方程:,解:,(1) x2=6,,直接开平方,得,(2)移项,得,x2=900.,直接开平方,得,x=30,,x1=30, x2=30.,典例精析,在解方程(I)时,由方程x2=25得x=5.由此想到: (x+3)2=5 , 得,对照上面方法,你认为怎样解方程(x+3)2=5,探究交流,于是,方程(x+3)2=5的两个根为,上面的解法中 ,由方程得到,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程转化为我们会解的方程了.,解题归纳,例2 解下列方程: (x1)2= 2 ;,解析:第1小题中只要将(x1
4、)看成是一个整体,就可以运用直接开平方法求解.,解:(1)x+1是2的平方根,,x+1=,解析:第2小题先将4移到方程的右边,再同第1小题一样地解.,例2 解下列方程: (2)(x1)24 = 0;,即x1=3,x2=-1.,解:(2)移项,得(x-1)2=4.,x-1是4的平方根,,x-1=2.,(3) 12(32x)23 = 0.,解析:第3小题先将3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.,解:(3)移项,得12(3-2x)2=3,,两边都除以12,得(3-2x)2=0.25.,3-2x是0.25的平方根,,3-2x=0.5.,即3-2x=0.5
5、,3-2x=-0.5,解:,方程的两根为,解:,方程的两根为,例3 解下列方程:,1.能用直接开平方法解的一元二次方程有什么特点?,如果一个一元二次方程具有x2=p或(xn)2= p(p0)的形式,那么就可以用直接开平方法求解.,2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.,探讨交流,当堂练习,(D) (2x+3)2=25,解方程,得2x+3=5, x1= 1;x2=-4,1.下列解方程的过程中,正确的是( ),(A) x2=-2,解方程,得x=,(B) (x-2)2=4,解方程,得x-2=2,x=4,D,(1)方程x2=0.25的根是 . (2)方程2x2=18的根是 .
6、(3)方程(2x-1)2=9的根是 .,3. 解下列方程:(1)x2-810; (2)2x250; (3)(x1)2=4 .,x1=0.5,x2=-0.5,x13,x2-3,x12,x21,2.填空:,解:x19, x29;,解:x15, x25;,解:x11, x23.,4.(请你当小老师)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.,解:,解:不对,从开始错,应改为,解方程:,挑战自我,解:,方程的两根为,课堂小结,直接开平方法,概念,步骤,基本思路,利用平方根的定义求方程的根的方法,关键要把方程化成 x2=p(p 0)或(x+n)2=p (p 0).,一元二次方程,两个一元一次方程,降次,直接开平方法,见学练优本课时练习,课后作业,