ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:217.39KB ,
资源ID:91865      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-91865.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年高考理科数学《圆锥曲线》题型归纳与训练)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年高考理科数学《圆锥曲线》题型归纳与训练

1、2020年高考理科数学圆锥曲线题型归纳与训练【题型归纳】题型一 求曲线的方程例1已知,点满足,记点的轨迹为求轨迹的方程【答案】【解析】由可知:点的轨迹是以为焦点的双曲线的右支,由,故轨迹的方程为.【易错点】(1)对于双曲线的定义理解片面;(2)如果动点满足,则点的轨迹是双曲线。但该题已知条件中给出的是“”只能表示点的轨迹是双曲线的右支,而不是双曲线的全部。【思维点拨】利用双曲线解题时,一定要观察是双曲线的全部还是部分。题型二 定值、定点问题例2已知椭圆C:1过A(2,0),B(0,1)两点(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x

2、轴交于点N,求证:四边形ABNM的面积为定值【答案】(1)y21,e(2)2.【解析】(1)由题意得所以椭圆C的方程为y21.又c,所以离心率e.(2)证明:设P(x0,y0)(x00,y00),则x4y4.又A(2,0),B(0,1),所以直线PA的方程为y(x2).令x0,得yM,从而|BM|1yM1.直线PB的方程为yx1.令y0,得xN,从而|AN|2xN2.所以四边形ABNM的面积S|AN|BM|从而四边形ABNM的面积为定值.【易错点】(1)想不到设出P(x0,y0)后,利用点斜式写出直线PA,PB的方程不会由直线PA,PB的方程求解|BM|,|AN|;(2)不知道四边形的面积可用

3、S| AN|BM|表示;(3)四边形ABNM的面积用x0,y0表示后,不会变形、化简,用整体消参来求值【思维点拨】第(1)问由a2,b1,c,解第一问;第(2)问画草图可知ANBM,四边形ABNM的面积为|AN|BM|,设点P(x0,y0),得出PA,PB的方程,进而得出M,N的坐标,得出|AN|,|BM|,只需证明|AN|BM|是一个与点P的坐标无关的量即可例3已知椭圆C:1(ab0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点【答案】(1)y21(

4、2)(2,1)【解析】(1)因为P3,P4,所以P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点又由知,椭圆C不经过点P1,所以点P2在椭圆C上.故椭圆C的方程为y21.(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),而k1k2.由题设k1k21,故(2k1)x1x2(m1)(x1x2)0.即(2k1)(m1)0.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1). 【易错点】(1)观察不出P3,P4对称,忽视对称性导致判断失误;(2)不会用点的坐标代入方程判断P1,P2是否在椭圆

5、上而滞做;(3)联立直线l与椭圆C的方程,计算化简失误而滞做;(4)利用k1k21运算变形不明确变形目标,导致化简不出k,m的关系【思维点拨】第(1)问利用椭圆的性质,易排除点P1(1,1)不在椭圆上,从而求椭圆方程;第(2)问分类讨论斜率是否存在,若存在,设l:ykxm,利用条件建立k,m的等量关系,消参后再表示出直线l的方程可证明题型三最值(范围)问题例4已知椭圆C:y21(a0),F1,F2分别是其左、右焦点,以F1F2为直径的圆与椭圆C有且仅有两个交点(1)求椭圆C的方程;(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范

6、围是,求线段AB长的取值范围【答案】(1)y21(2)【解析】(1)因为以F1F2为直径的圆与椭圆C有且仅有两个交点,所以bc1,a,所以椭圆C的方程为y21(2)根据题意,直线A,B的斜率存在且不为0,设直线AB的方程为yk(x1),与y21联立,消去y并整理得(12k2)x24k2x2k220,设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),则x1x2,x1x2,y1y2k(x11)k(x21)k(x1x22),即M.则直线AB的垂直平分线为y,令y0,得xP,因为xP,即0,所以0k2,.1,|AB|【易错点】运算错误,由于运算方法、运算技巧以及自身运算能力差,都是出

7、错原因。【思维点拨】与圆锥曲线有关的取值范围问题的三种解法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域题型四存在性问题例5.如图,椭圆E:1(ab0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的标准方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由【答案】(1)1(2)3,理由见解析【解析】(1)由已知,点C,D的坐标分别为(0,b),(0

8、,b)又点P的坐标为(0,1),且1,于是解得a2,b.所以椭圆E的方程为1.(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x24kx20.其判别式(4k)28(2k21)0,所以x1x2,x1x2.从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.所以,当1时,23.此时,3为定值当直线AB斜率不存在时,直线AB即为直线CD.此时,2.当1时,3,为定值综上,存在常数1,使得为定值3.【思维点拨】解决是否存在常数的问题时,应首先假设存在,看是否能求出符合条件的参数值,如果

9、推出矛盾就不存在,否则就存在。例6已知椭圆C:1(ab0)的右焦点为F2(2,0),点P在椭圆C上(1)求椭圆C的标准方程;(2)是否存在斜率为1的直线l与椭圆C相交于M,N两点,使得|F1M|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由【答案】(1)1(2)不存在满足条件的直线l【解析】(1)法一:椭圆C的右焦点为F2(2,0),c2,椭圆C的左焦点为F1(2,0)由椭圆的定义可得2a 2,解得a,b2a2c2642.椭圆C的标准方程为1.法二:椭圆C的右焦点为F2(2,0),c2,故a2b24,又点P在椭圆C上,则1,故1,化简得3b44b2200,得b22

10、,a26.椭圆C的标准方程为1.(2)假设存在满足条件的直线l,设直线l的方程为yxt,由得x23(xt)260,即4x26tx(3t26)0,(6t)244(3t26)9612t20,解得2t2.设M(x1,y1),N(x2,y2),则x1x2,x1x2,由于|F1M|F1N|,设线段MN的中点为E,则F1EMN,故kF1E1,又F1(2,0),E,即E,kF1E1,解得t4.当t4时,不满足2tb0)的离心率为,点(2,)在C上(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M证明:直线OM的斜率与直线l的斜率的乘积为定值【答案】(1)1(

11、2)略【解析】(1)由题意有,1,解得a28,b24.所以C的方程为1(2)证明:设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入1,得(2k21)x24kbx2b280故xM,yMkxMb于是直线OM的斜率kOM,即kOMk.所以直线OM的斜率与直线l的斜率的乘积为定值2.已知动圆M恒过点(0,1),且与直线y1相切(1)求圆心M的轨迹方程;(2)动直线l过点P(0,2),且与点M的轨迹交于A,B两点,点C与点B关于y轴对称,求证:直线AC恒过定点. 【答案】(1)x24y(2)略【解析】(1)由题意,得点M与点(0,1)的距离始终等于点M

12、到直线y1的距离,由抛物线定义知圆心M的轨迹为以点(0,1)为焦点,直线y1为准线的抛物线,则1,p2.圆心M的轨迹方程为x24y(2)证明:由题知,直线l的斜率存在,设直线l:ykx2,A(x1,y1),B(x2,y2),则C(x2,y2),联立得x24kx80,kAC,则直线AC的方程为yy1(xx1),即yy1(xx1)xxx1x28,yxx2,故直线AC恒过定点(0,2)3.已知椭圆C:1(ab0)上一点P与椭圆右焦点的连线垂直于x轴,直线l:ykxm与椭圆C相交于A,B两点(均不在坐标轴上)(1)求椭圆C的标准方程;(2)设O为坐标原点,若AOB的面积为,试判断直线OA与OB的斜率之

13、积是否为定值? 【答案】(1)1(2)【解析】(1)由题意知解得椭圆C的标准方程为1(2)设点A(x1,y1),B(x2,y2),由得(4k23)x28kmx4m2120,由(8km)216(4k23)(m23)0,得m24k23x1x2,x1x2,SOAB|m|x1x2|m|,化简得4k232m20,满足0,从而有4k2m2m23(*),kOAkOB,由(*)式,得1,kOAkOB,即直线OA与OB的斜率之积为定值题型三 最值(范围)问题1.已知平面内一动点M与两定点B1(0,1)和B2(0,1)连线的斜率之积等于.(1)求动点M的轨迹E的方程;(2)设直线l:yxm(m0)与轨迹E交于A,

14、B两点,线段AB的垂直平分线交x轴于点P,当m变化时,求PAB面积的最大值. 【答案】(1)y21(x0)(2)【解析】(1)设M的坐标为(x,y),1分依题意得,化简得动点M的轨迹E的方程为y21(x0)(2)设A(x1,y1),B(x2,y2)联立化简得3x24mx2m220(x0),有两个不同的交点,由根与系数的关系得x1x2,x1x2,(4m)212(2m22)0,即m且m1,0,1.设A,B的中点为C(xC,yC),则xC,yCxCm,C,线段AB的垂直平分线方程为y,令y0,得P点坐标为 则点P到AB的距离d,由弦长公式得|AB|,SPAB,当且仅当m2,即m(,)时,等号成立,P

15、AB面积的最大值为2.已知椭圆1(ab0)离心率为,过点E(,0)的椭圆的两条切线相互垂直. (1)求此椭圆的方程;(2)若存在过点(t,0)的直线l交椭圆于A,B两点,使得FAFB(F为右焦点),求t的取值范围. 【答案】(1)1(2)【解析】(1)由椭圆的离心率e,得a2c,b2a2c23c2.不妨设在x轴上方的切点为M,x轴下方的切点为N,由椭圆的对称性知kME1,直线ME的方程为yx, 联立消去y,整理得7x28x2812c20,由(8)247(2812c2)0,得c1,a2,b,椭圆方程为1.(2)设l的方程为xmyt,A(x1,y1),B(x2,y2),联立消去x,整理得(3m24

16、)y26mty3t2120,则y1y2,y1y2.又(x11,y1),(x21,y2),(x11)(x21)y1y2x1x2(x1x2)1y1y2(m21)y1y2(mtm)(y1y2)t22t10,(m21)(3t212)(mtm)(6mt)(t22t1)(3m24)0,化简得7t28t89m2.要满足题意,则7t28t89m2有解,7t28t80,解得t或t.t的取值范围为.3.已知椭圆1(ab0)的右焦点为F,直线PQ过F交椭圆于P,Q两点,且|PF|max|QF|min. (1)求椭圆的长轴与短轴的比值; (2)如图,线段PQ的垂直平分线与PQ交于点M,与x轴,y轴分别交于D,E两点,

17、求的取值范围【答案】(1)2(2)【解析】(1)设F(c,0),则|PF|maxac,|QF|minac,a2c2.b2c2a2,a24b2,长轴与短轴的比值为2a2b2.(2)由(1)知a2b,可设椭圆方程为1.依题意,直线PQ的斜率存在且不为0,设直线PQ的方程为yk(xc),P(x1,y1),Q(x2,y2),联立消去y,得(4k21)x28k2cx4k2c24b20,则x1x2,y1y2k(x1x22c),M.MDPQ,设D(x3,0),k1,解得x3,D.DMFDOE,的取值范围为.题型四存在性问题1.如图,椭圆C:1(ab0)经过点P,离心率e,直线l的方程为x4.(1)求椭圆C的

18、方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1k2k3?若存在,求的值;若不存在,说明理由【答案】(1)1(2)2【解析】(1)由P在椭圆上得,1.依题设知a2c,则b23c2.代入解得c21,a24,b23.故椭圆C的方程为1.(2)由题意可设直线AB的斜率为k,则直线AB的方程为yk(x1)代入椭圆方程并整理,得(4k23)x28k2x4(k23)0.设A(x1,y1),B(x2,y2),则有x1x2,x1x2.在方程中令x4得,M的坐标为(4,3k)从而k1,k2,k3k.由于

19、A,F,B三点共线,则有kkAFkBF,即有k.所以k1k22k.代入得k1k22k2k1,又k3k,所以k1k22k3.故存在常数2符合题意2.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(2,0),点B(2,)在椭圆C上,直线ykx(k0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N.(1)求椭圆C的方程;(2)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由【答案】(1)1(2)P(2,0)或P(2,0)【解析】(1)设椭圆C的方程为1(ab0),因为椭圆的左焦点为F1(2,0),所以a

20、2b24.由题可得椭圆的右焦点为F2(2,0),已知点B(2,)在椭圆C上,由椭圆的定义知|BF1|BF2|2a,所以2a34.所以a2,从而b2.所以椭圆C的方程为1.(2)因为椭圆C的左顶点为A,则点A的坐标为(2,0)因为直线ykx(k0)与椭圆1交于两点E,F,设点E(x0,y0)(不妨设x00),则点F(x0,y0)联立方程消去y得x2.所以x0,y0,所以直线AE的方程为y(x2)因为直线AE与y轴交于点M,令x0,得y,即点M.同理可得点N.假设在x轴上存在点P(t,0),使得MPN为直角,则0.即t20,即t240.解得t2或t2.故存在点P(2,0)或P(2,0),无论非零实

21、数k怎样变化,总有MPN为直角3.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由【答案】(1)1(2)所以符合题意的直线l不存在【解析】(1)依题意,可设椭圆C的方程为1(ab0),且可知其左焦点为F(2,0)从而有解得又a2b2c2,所以b212.故椭圆C的方程为1.(2)假设存在符合题意的直线l,设其方程为yxt.由得3x23txt2120.因为直线l与椭圆C有公共点,所以(3t)243(t212)1443t20,解得4t4.另一方面,由直线OA与l的距离等于4,可得4,从而t2.由于2 4,4 ,所以符合题意的直线l不存在