ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:487.05KB ,
资源ID:91857      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-91857.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年高考文科数学《 基本初等函数》题型归纳与训练)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年高考文科数学《 基本初等函数》题型归纳与训练

1、2020年高考文科数学 基本初等函数题型归纳与训练【题型归纳】题型一 幂函数的图像与性质例1 已知幂函数的图象过点,则的值为()A. B C D【答案】【解析】由幂函数的图象过点,得,则幂函数,.故选.【易错点】幂函数的运算法则,以及对数的运算公式.【思维点拨】熟练掌握幂函数的函数类型.例2 如果幂函数是偶函数,且在上是增函数,求的值,并写出相应的函数的解析式.【答案】,.【解析】因为在上是增函数,所以,所以.又因为是偶函数且,所以,故.【易错点】易忘记这一关键条件,以及幂函数在递增时指数的特征.【思维点拨】熟练掌握幂函数的函数的奇偶性特征,以及幂函数在上是单调递增时幂函数的指数恒为正数.题型

2、二 二次函数的图像和性质(最值)例1 已知,若的最小值为,写出的表达式 .【答案】【解析】如图所示,函数图像的对称轴为(1) 当,即时,.(2) 当,即时,.(3) 当时,.综上可得【易错点】首先要注意二次函数的开口方向,然后才可以根据二次函数的对称轴去进行分类讨论.【思维点拨】所求二次函数解析式(所以图像也)固定,区间变动,可考虑区间在变动过程中,二次函数的单调性,从而利用二次函数的单调性求函数在区间上的最值.例2 已知函数,若关于的不等式恰有个整数解,则实数的最大值是()A2 B3 C5 D8【答案】D【解析】作出函数的图象如图实线部分所示,由得,若,则满足不等式,即不等式有个整数解,不满

3、足题意,所以,所以,且整数解只能是,当时,所以,即的最大值为,故选.【易错点】这是二次函数的复合函数,务必理清楚和掌握函数的图像.【思维点拨】根据数型结合画出函数的图像,然后利用方程的求根公式进行解题.题型三 指数函数例1 已知奇函数在上是增函数.若,则的大小关系为( ).A. B. C. D.【答案】C【解析】因为在上是奇函数,所以,又因为在上是增函数,且,所以,即.故选C【思维点拨】本题主要考查函数的奇偶性与指数、对数的运算,为基础题。首先根据奇函数的性质和对数运算法则,再比较比较大小.例2 设函数,则满足的的取值范围是_【答案】【解析】当时,不等式为恒成立;当,不等式恒成立;当时,不等式

4、为,解得,即;综上,的取值范围为【思维点拨】本题以分段函数(含指数函数)为载体,求解不等式。考查了分类思想。解题需注意; (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.题型四 对数函数例1 已知函数(为常数,其中)的图象如图,则下列结论成立的是 A B C D 【答案】 【解析】由图象可知,当时,得例2 若函数,若,则实数的取值范围是( )A BC D

5、【答案】 【解析】由分段函数的表达式知,需要对的正负进行分类讨论. 例3 若函数且的值域为,则函数的图象大致是() 【答案】 【解析】由于的值域为, ,则在上是增函数,又 函数的图象关于轴对称.因此的图象应大致为选项.【思维点拨】指数函数、对数函数的图象和性质受底数的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数的范围.题型五 函数的应用例1 某食品的保鲜时间(单位:小时)与储藏温度(单位:)满足函数关系(为自然对数的底数,为常数).若该食品在0 的保鲜时间是192小时,在22 的保鲜时间是48小时,则该食品在33 的保鲜时间是_小时.【答案】24【解析】由已知条件,得,又

6、,设该食品在33 的保鲜时间是小时,则.【思维点拨】重点考察对指数函数应用题的理解和计算.【巩固训练】幂函数的图像与性质1.函数是幂函数,且在上为增函数,则实数的值是()A1 B2 C3 D1或2【答案】【解析】由题知,解得.故选.2.已知,若幂函数为奇函数,且在上递减,则=_【答案】【解析】由题意为奇函数,所以只能取,又在上递减,所以3.已知幂函数的部分对应值如下表:11则不等式的解集是.【答案】【解析】由,故,故其解集为.题型二 二次函数的图像和性质(最值)1.已知,函数.若,则( ).A. , B. , C. , D. ,【答案】【解析】 因为,所以函数图象应开口向上,即,且其对称轴为,

7、即,所以,故选.2.已知函数,若函数有个零点,则实数的取值范围是_【答案】【解析】若函数有个零点,即与有个不同的交点,作出的图象和的图象,可得出的取值范围是3.已知对任意的,函数的值总大于,则的取值范围是()A(1,3) B(,1)(3,) C(1,2) D(,2)(3,)【答案】【解析】.令,则由题知,当时,恒成立,则须,解得或.故选.题型三 指数函数1. 已知,则函数和在同一坐标系中的图象只可能是图中的( )A. B. C. D.【答案】D【解析】根据题意,由,函数在上为减函数,可排除选项A、C,又,则函数的图象是开口向下.故选D.2.已知函数(且)的图象如下图所示,则的值是_【答案】6【

8、解析】由函数(且)过点代入表达式得: ,所以3.与函数 的图象有且仅有两个公共点,则实数的取值范围是_.【答案】【解析】的图象由的图象向下平移一个单位,再将轴下方的图象翻折到轴上方得到,分和两种情况分别作图,如图所示,当时不合题意;时,需要,即,故答案为. 题型四 对数函数1.若点在 图像上,,则下列点也在此图像上的是( )A B C D【答案】【解析】当时,所以点在函数图象上2.如果那么( )A B C D【答案】【解析】根据对数函数的性质得3.当时,则的取值范围是 ( )A B C D【答案】【解析】由指数函数与对数函数的图像知,解得,故选B.4已知,若,则=_,=_.【答案】 【解析】设,则,因为,因此6.在同一直角坐标系中,函数,的图象可能是() 【答案】D【解析】因为,所以在上为增函数,故错.在中,由的图象知,由的图象知,矛盾,故错.在中,由的图象知,由的图象知,矛盾,故C错.在D中,由的图象知,由的图象知,相符,故选D.