ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:143.15KB ,
资源ID:91851      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-91851.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年高考理科数学《不等式选讲》题型归纳与训练)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年高考理科数学《不等式选讲》题型归纳与训练

1、 2020年高考理科数学不等式选讲题型归纳与训练【题型归纳】题型一 解绝对值不等式 例1、设函数f(x)|x1|x2|.(1)解不等式f(x)3;(2)若f(x)a对xR恒成立,求实数a的取值范围.【答案】(1)(,0)(3,);(2)(,1).【解析】(1)因为f(x)|x1|x2|所以当x1时,32x3,解得x0;当1x2时,f(x)3无解;当x2时,2x33,解得x3.所以不等式f(x)3的解集为(,0)(3,).(2)因为f(x)所以f(x)min1.因为f(x)a恒成立,【易错点】如何恰当的去掉绝对值符号【思维点拨】用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对

2、值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.题型二 利用绝对值的几何意义或图象解不等式例2、(1)若不等式|x1|x2|a2a2对任意实数x恒成立,则实数a的取值范围是_【答案】(1).【解析】(1)|x1|x2|(x1)(x2)|3,a2a23,解得a.即实数a的取值范围是.【易错点】绝对值的几何意义和如何把恒成立问题转化为最值问题【思维点拨】解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)f(x)max,f(x)a恒成立acd,则;(2)是|ab|cd得()2()2.因此.(2)若

3、|ab|cd|,则(ab)2(cd)2,即(ab)24abcd.由(1)得.若,则()2()2,即ab2cd2.因为abcd,所以abcd.于是(ab)2(ab)24ab(cd)24cd(cd)2.因此|ab|是|ab|cd|的充要条件【易错点】不等式的恒等变形.【思维点拨】分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆【巩固训练】题型一 解绝对值不等式 1.不等式|x1|x2|5的解集为_【答案】x|x3或x2.【解析】原不等式等价于或或解得x

4、2或x3.故原不等式的解集为x|x3或x22.已知函数f(x)|xa|x2|.(1)当a3时,求不等式f(x)3的解集;(2)若f(x)|x4|的解集包含1,2,求a的取值范围【答案】(1)x|x1或x4;(2)3,0【解析】(1)当a3时,f(x)当x2时,由f(x)3得2x53,解得x1;当2xk的解集为R,则实数k的取值范围是_【答案】(,3)【解析】解法一:根据绝对值的几何意义,设数x,1,2在数轴上对应的点分别为P,A,B,则原不等式等价于PAPBk恒成立AB3,即|x1|x2|3.故当kk恒成立,从图象中可以看出,只要k3即可故k3满足题意题型三 不等式的证明与应用1. 已知a、b

5、、cR,且abc1;求证:(1a)(1b)(1c)8(1a)(1b)(1c).【答案】略.【解析】证明:因为a、b、cR,且abc1,所以要证原不等式成立,即证(abc)a(abc)b(abc)c8(abc)a(abc)b(abc)c,也就是证(ab)(ca)(ab)(bc)(ca)(bc)8(bc)(ca)(ab).因为(ab)(bc)20,(bc)(ca)20,(ca)(ab)20,三式相乘得式成立,故原不等式得证.2.设a、b、c、d均为正数,且abcd,证明:(1)若abcd,则;(2)是|ab|cd|的充要条件 【答案】略.【解析】证明(1)因为()2ab2,()2cd2,由题设ab

6、cd,abcd得()2()2.因此.(2)若|ab|cd|,则(ab)2(cd)2, 即(ab)24ab(cd)24cd.因为abcd,所以abcd.由(1)得.若,则()2()2,即ab2cd2.因为abcd,所以abcd,于是(ab)2(ab)24ab(cd)24cd(cd)2.因此|ab|cd|.综上,是|ab|cd|的充要条件3.设a、b、c均为正数,且abc1.证明:(1)abbcac;(2)1.【答案】略.【解析】(1)由a2b22ab,b2c22bc,c2a22ca得a2b2c2abbcca.由题设得(abc)21,即a2b2c22ab2bc2ca1.所以3(abbcca)1,即abbcca.(2)因为b2a,c2b,a2c,故(abc)2(abc),即abc.所以1.5