ImageVerifierCode 换一换
格式:DOC , 页数:30 ,大小:1.26MB ,
资源ID:91260      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-91260.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题2.1 空间点、直线、平面之间的位置关系-20届高中数学同步讲义人教版(必修2))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题2.1 空间点、直线、平面之间的位置关系-20届高中数学同步讲义人教版(必修2)

1、一、平面1平面的概念生活中的一些物体通常呈平面形,课桌面、黑板面、海面都给我们以平面的形象几何里所说的“平面”(plane)就是从这样的一些物体中抽象出来的但是,几何里的平面是_的,一个平面可以将空间分成_部分 2平面的画法在立体几何中,我们通常用_来表示平面(1)当平面水平放置时,如图(1),平行四边形的锐角通常画成_,且横边长等于其邻边长的 _倍;当平面竖直放置时,如图(2),平行四边形的一组对边通常画成铅垂线(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,也可以不画如图(1)表示平面在平面的上面,图(2)表示平面在平面的前面3平面的表示为了表示平

2、面,我们常把希腊字母,等写在代表平面的平行四边形的一个角上,如平面,平面;也可以用代表平面的平行四边形的四个顶点表示,还可以用代表平面的平行四边形的_的大写英文字母表示如图中的平面可以表示为:平面、平面ABCD、平面AC或平面BD学科*网4点、直线、平面之间位置关系的符号表示点、直线、平面的位置关系通常借助_中的符号语言来表示,_为元素,直线、平面都是点构成的_集合中很多符号的规定都源于将图形视为点集点与直线(平面)之间的位置关系用符号“”,“”表示,直线与平面之间的位置关系用符号“”,“”表示等点、直线、平面之间位置关系的符号表示如下:点P在直线a上,记作P_a;点Q不在直线a上,记作Qa;

3、 点A在平面内,记作A;点B不在平面内,记作B_;直线a在平面内,记作a_;直线l不在平面内,记作l;直线a与b相交于点A,记作ab=A;平面,相交于直线l,记作=l二、平面的基本性质1三个公理(1)公理1:如果一条直线上的_在一个平面内,那么这条直线在此平面内符号表示:Al,Bl,且A,Bl如图所示:作用:判断直线是否在平面内,点是否在平面内;用直线检验平面(2)公理2:过_的三点,有且只有一个平面符号表示:A,B,C三点不共线有且只有一个平面,使A,B,C如图所示:作用:确定一个平面;判断两个平面重合;证明点、线共面(3)公理3:如果两个不重合的平面有_公共点,那么它们有且只有一条过该点的

4、_符号表示:P,且Pl,且Pl如图所示:作用:判断两个平面相交;证明点共线;证明线共点对三个公理的理解(1)对于公理1,我们可以知道:一是整条直线在平面内;二是直线上的所有点在平面内(2)“不在一条直线上”和“三点”是公理2的重点字眼,如果没有前者,那么只能说“有一个平面”,但不唯一;如果将“三点”改成“四点”,那么过四点不一定存在一个平面由此可见,“不在一条直线上的三点”是确定一个平面的条件学科#网(3)公理3反映了平面与平面的一种位置关系相交,且交线唯一2公理2的三个推论(1)推论1:经过一条直线和_的一点,有且只有一个平面符号语言:若点直线a,则A和a确定一个平面如图所示:(2)推论2:

5、经过两条_,有且只有一个平面符号语言:有且只有一个平面,使,如图所示:(3)推论3:经过两条_,有且只有一个平面符号语言:有且只有一个平面,使,如图所示:三、空间两直线的位置关系1异面直线(1)异面直线的定义:我们把不同在_的两条直线叫做异面直线 即若a,b是异面直线,则不存在平面,使a且b(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面(1)_同一平面内,有且只有一个公共点;(2)_同一平面内,没有公共点;(3)_不同在任何一个平面内,没有公共点3 空间中两直线位置关系的分类空间中两

6、条直线的位置关系有以下两种分类方式:(1)从有无公共点的角度分类: (2)从是否共面的角度分类: 四、公理4与等角定理1公理4(1)自然语言:平行于同一条直线的两条直线互相_(2)符号语言:a,b,c是三条不同的直线, ab,bc_ (3)作用:判断或证明空间中两条直线平行公理4表述的性质也通常叫做空间平行线的传递性用公理4证明空间两条直线平行的步骤(1)找到直线;(2)证明,;(3)得到2等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角_(2)符号语言: 如图(1)(2)所示,在AOB与AOB中,OAOA,OBO B,则AOB=AOB或AOB+AOB=180图(1)

7、图(2)五、异面直线所成的角1两条异面直线所成的角的定义如图,已知两异面直线a,b,经过空间任一点O,分别作直线aa,bb,相交直线a,b所成的 叫做异面直线a与b所成的角(或夹角) (1)在定义中,空间一点O是任取的,根据等角定理,可以判定a,b所成的角的大小与点O的位置无关为了简便,点O常取在两条异面直线中的一条上(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路2异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角的取值范围为_3两条异面直线垂直的定义如果两条异面直线所成的角是_,那么我们就说这

8、两条直线互相垂直两条互相垂直的异面直线a,b,记作ab 4构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;学&科网(3)构造辅助平面、辅助几何体来平移直线注意,若求得的角为钝角,则两异面直线所成的角应为其补角5求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线;(2)证明:证明作出的角就是要求的角;(3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是

9、所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角六、空间中直线与平面的位置关系1直线与平面的位置关系直线与平面的位置关系有且只有_种: 直线在平面内有_个公共点;直线与平面相交有且只有一个公共点; 学科#网_没有公共点 直线与平面相交或平行的情况统称为_2直线与平面的位置关系的符号表示和图形表示3直线和平面位置关系的分类(1)按公共点个数分类:;(2)按是否平行分类:;(3)按直线是否在平面内分类:七、平面与平面之间的位置关系1两个平面之间的位置关系两个平面之间的位置关系有且只有以下两种:(1)两个平面平行没有公共点;(2)两个平面相交有_条公共直线2两个平面之间的位

10、置关系的图形表示和符号表示3两个平行平面的画法画两个平行平面时,要注意使表示平面的两个平行四边形的对应边平行,且把这两个平行四边形上下放置K知识参考答案:一、1无限延展 两2平行四边形(1)45 2 3相对的两个顶点4集合 点 集合 二、1(1)两点 (2)不在一条直线上(3)一个 公共直线2(1)这条直线外(2)相交直线(3)平行直线三、1(1)任何一个平面内2(1)相交直线(2)平行直线(3)异面直线四、1(1)平行(2)ac2(1)相等或互补五、1锐角(或直角)23直角六、1三 无数 直线与平面平行 直线在平面外七、1一 K重点1三种语言的转换与翻译,三个公理的掌握与运用;2掌握公理4及

11、等角定理,异面直线及其所成的角;3了解空间中直线与平面、平面与平面的位置关系K难点1公理的理解与运用;2理解两异面直线所成角的定义,并会求两异面直线所成的角;3会用图形语言、符号语言表示直线与平面、平面与平面之间的位置关系K易错1应用公理或其推论时忽略重要条件致误;2忽略异面直线所成的角的范围致误;3对概念理解不透彻致误1三种语言的转换学习几何问题,三种语言间的互相转换是一种基本技能要注意:(1)正确区分点、直线、平面之间位置关系的符号表示;(2)用图形表示时,正确区别实线和虚线【例1】用符号语言表示下列语句,并画出图形: (1)三个平面,相交于一点P,且平面与平面相交于PA,平面与平面相交于

12、PB,平面与平面相交于PC; (2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC【答案】答案详见解析【解析】(1)符号语言表示:=P,=PA,=PB,=PC,图形表示:如图(1)(2)符号语言表示:平面ABD平面BDC=BD,平面ABC平面ADC=AC,图形表示:如图(2)(1) (2)【名师点睛】要注意符号语言的意义,如点与直线、点与平面之间的位置关系只能用“”或“”,直线与平面之间的位置关系只能用“”或“”用图形语言表示点、线、面之间的位置关系时,要注意实线和虚线的区别学科&网2点、线共面问题公理1、公理2及其推论是证明点、线共面的主要依据常用的方法有:(1)纳入平面

13、法:先由部分元素确定一个平面,再证明其他的元素也在此平面内(2)辅助平面法:先证明有关点、线确定平面,再证明其余点、线确定平面,最后证明,重合【例2】求证:两两相交且交点不止一个的四条直线a、b、c、d共面【答案】证明详见解析(2)有三线共点的情况,如图(2)设b,c,d三线相交于点K,与a分别交于点N,P,M,且,因为,所以K和a确定一个平面,设为因为,所以所以,即同理,所以a,b,c,d共面由(1)(2)知,a、b、c、d共面3平面的交线问题根据公理3,如果不重合的两个平面有一个公共点,那么它们必定还有其他公共点,只要找出这两个平面的两个公共点,就找出了它们的交线因此求两个平面的交线的突破

14、口是找到这两个平面的两个公共点【例3】如图,直角梯形ABDC中,ABCD,ABCD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线【答案】答案详见解析【解析】很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上由于ABCD,则分别延长AC和BD交于点E,如图所示点同理,可证点E在平面SBD和平面SAC的交线上,则连接SE,直线SE是平面SBD和平面SAC的交线4三点(多点)共线问题点共线问题就是证明三个或三个以上的点在同一条直线上,主要依据是公理3常用方法有:(1)首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知这些点都在这两个平面的交线上

15、;学科&网(2)选择其中两点确定一条直线,然后证明其他点也在这条直线上【例4】已知在平面外,它的三边所在的直线分别交平面于P,Q,R三点,求证:三点在同一条直线上【答案】证明详见解析5三线共点问题证明三线共点问题,一般先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点【例5】在空间四边形中,H、G分别是AD、CD的中点,E、F分别是边AB、BC上的点,且求证:直线EH、BD、FG相交于一点【答案】证明详见解析【解析】如图所示,连接EF、GH【名师点睛】要证明点共线或线共点的问题,关键是

16、转化为证明点在直线上,也就是利用公理3,即证点在两个平面的交线上或者选择其中两点确定一直线,然后证明另一点也在此直线上6空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系【例6】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为ABCD【答案】A【方法技巧】判定或证明两直线异面的常用方法:1定义法:不同在任何一个平面内的两条直线

17、 2定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线 3推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线 4反证法:证明立体几何问题的一种重要方法学科*网证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立7公理4的应用证明两条直线平行的方法:(1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等;(3)利用公理4【例7】如图,的各边对应平行于的各边,点E,F分别在边AB,

18、AC上,且,试判断EF与的位置关系,并说明理由【答案】EF与平行理由详见解析【解析】平行理由如下:,又,8等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况【例8】空间两个角,的两边分别对应平行,且=60,则为A60B120C30D60或120【答案】D【名师点睛】根据公理4知道当空间两个角与的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到的度数学科!网9两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点【例9】如图,四棱锥中,和都是等边三角形,则异面直线和所成角的大小为ABCD【答案】A【名师点睛

19、】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几何体的结构特征,把空间中异面直线和所成的角转化为平面角,放置在三角形中,利用解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题10直线与平面的位置关系空间直线与平面位置关系的分类是解决问题的突破口,这类判断问题,常用分类讨论的方法解决【例10】若直线a,则下列结论中成立的个数是内的所有直线与a异面;内的直线与a都相交;内存在唯一的直线与a平行;内不存在与a平行的直线A0 B1 C2 D3【答案】A【解析】直线a,a或a=A如图,显然都有反例,所以应选A【名师点睛】判断

20、一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维11平面与平面的位置关系判断两平面之间的位置关系时,可把自然语言转化为图形语言,搞清图形间的相对位置是确定的还是可变的,借助于空间想象能力,确定平面间的位置关系【例11】已知 ,是两个不重合的平面,下面说法正确的是A平面内有两条直线a,b都与平面平行,那么B平面内有无数条直线平行于平面,那么C若直线a与平面和平面都平行,那么D平面内所有的直线都与平面平行,那么 【答案】D【解析】不能保证,无公共点如图:故A、B选项错误当a,a时,与可能相交如图:故C选项错误平面内所有直线都与平面平行,说明,一定无

21、公共点,则故D选项正确【名师点睛】两个平面之间的位置关系有且只有两种:平行和相交判断两个平面之间的位置关系的主要依据是两个平面之间有没有公共点解题时要善于将自然语言或符号语言转换成图形语言,借助空间图形作出判断学科&网12应用公理或其推论时出错【例12】已知A,B,C,D,E五点中,A,B,C,D共面,B,C,D,E共面,则A,B,C,D,E五点一定共面吗?【错解】因为A,B,C,D共面,所以点A在B,C,D所确定的平面内,因为B,C,D,E共面,所以点E也在B,C,D所确定的平面内,所以点A,E都在B,C,D所确定的平面内,即A,B,C,D,E五点一定共面【错因分析】错解忽略了公理2中“不在

22、一条直线上的三点”这个重要条件实际上B,C,D三点有可能共线【正解】(1)如果B,C,D三点不共线,则它们确定一个平面因为A,B,C,D共面,所以点A在平面内,因为B,C,D,E共面,所以点E在平面内,所以点A,E都在平面内,即A,B,C,D,E五点一定共面 (2)若B,C,D三点共线于l,若Al,El,则A,B,C,D,E五点一定共面;若A,E中有且只有一个在l上,则A,B,C,D,E五点一定共面;若A,E都不在l上,则A,B,C,D,E五点可能不共面【名师点睛】在立体几何中,空间点、线、面之间的位置关系不确定时,要注意分类讨论,避免片面地思考问题对于确定平面问题,在应用公理2及其三个推论时

23、一定要注意它们成立的前提条件13忽略异面直线所成的角的范围致误【例13】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30,求BC与AD所成的角【错解】如图,连接BD,并取中点E,连接EN,EM,则ENBC,MEAD,故为BC与MN所成的角,MEN为BC与AD所成的角,ENM=30又由AD=BC,知ME=EN,EMN=ENM=30,即BC与AD所成的角为120【错因分析】在未判断出MEN是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角的取值范围是,如果MEN为钝角,那么它的补角才是异面直线所成的角 【正解】以

24、上同错解,求得MEN=120,即BC与AD所成的角为60 【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角的取值范围是14对直线与平面相交的概念理解不透彻致误【例14】已知:直线ab,a平面=P,求证:直线b与平面相交【错解】如图,因为ab,所以a,b确定一个平面,学科网设该平面为因为a平面=P,所以Pa,P,所以P,即点P为平面与的一个公共点,由此可知与相交于过点P的一条直线,记为c,即=C 在平面内,ab,ac=P由平面几何知识可得b与c也相交,设bc=Q,则Qb,QC因为c,所以Q,所以直线b与平面相交 【错因分析】错解中对直线与平面相交的概念理解不透彻,误认为直线和平面相交

25、就是直线和平面有一个公共点 【正解】因为ab,所以a,b确定一个平面,设该平面为 因为a平面=P,所以平面与相交于过点P的一条直线,记为c, 因为在平面内,c和两条平行直线a,b中的一条直线a相交,所以c必和b相交,设交点为Q,即bc=Q 又直线b不在平面内(若b在平面内,则与过两相交直线b和c,因此与重合,则a在内,与已知矛盾),所以直线b与平面相交 【名师点睛】直线与平面相交,要求直线与平面有且只有一个公共点,即直线与平面有一个公共点且直线不在平面内,也就是直线既不与平面平行,又不在平面内1已知A、B、C、D四点共面,B、C、D、E四点共面,则A、B、C、D、E五点A共面B不共面C共线D不

26、确定2一条直线和这条直线之外不共线的三点所能确定的平面的个数是A1个或3个B1个或4个C3个或4个D1个、3个或4个3下列说法正确的是A过平面外一点作这个平面的垂直平面是唯一的B过直线外一点作这条直线的垂线是唯一的C过平面的一条斜线作这个平面的垂直平面是唯一的D过直线外一点作这条直线的平行平面是唯一的4有关平面的说法错误的是A平面一般用希腊字母、来命名,如平面B平面是处处平直的面C平面是有边界的面D平面是无限延展的5两条异面直线的公垂线指的是A和两条异面直线都垂直的直线B和两条异面直线都垂直相交的直线C和两条异面直线都垂直相交且夹在两交点之间的线段D和两条异面直线都垂直的所有直线6空间中,如果

27、一个角的两边和另一个角的两边分别对应平行,那么这两个角的大小关系为A相等B互补C相等或互补D互余7下列说法中,正确的个数是(1)平行于同一平面的两条直线平行(2)直线a平行于平面内的一条直线b,那么直线a平面(3)若两平行直线中的一条与平面相交,那么另一条也与平面相交(4)直线a与平面内的无数条直线相交,那么直线a在平面内A0B1C2D38若不共线的三点到平面的距离相等,则该三点确定的平面与之间的关系是A平行B相交C平行或相交D以上都不对9过空间三个不同的点可以确定的平面的个数是_10正方体ABCDA1B1C1D1中,异面直线AD与CB1所成的角为_11m,n为异面直线,P为m,n外一点,则过

28、点P与m,n都平行的平面有A1个B0或1个C1或2个D无法确定12已知a,b是两条相交直线,a,则b与的位置关系是AbBb与相交CbDb或b与相交13直线a与平面a斜交,则在平面a内与直线a垂直的直线A没有B有一条C有无数条Da内所有直线14下列四个命题正确的是A两两相交的三条直线必在同一平面内B若四点不共面,则其中任意三点都不共线C在空间中,四边相等的四边形是菱形D在空间中,有三个角是直角的四边形是矩形15若三个平面两两相交,则它们的交线条数是A1条B2条C3条D1条或3条16如果三个平面将空间分成6个互不重叠的部分,则这三个平面的位置是A两两相交于三条交线B两个平面互相平行,另一平面与它们

29、相交C两两相交于同一条直线DB中情况或C中情况都可能发生17下列四个命题:空间四点共面,则其中必有三点共线;空间四点中有三点共线,则此四点必共面;空间四点中任何三点不共线,则此四点不共面;空间四点不共面,则任意三点不共线其中正确命题的序号是_18已知点P,Q,R分别在三棱锥SABC的三条侧棱SA,SB,SC上,且PQ与AB交于点D,PR与AC交于点E,RQ与BC交于点F,求证:D,E,F三点共线19如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M、N分别为AB、DF的中点,求证:直线ME与BN是两条异面直线20如图,空间四边形ABCD中,E、F分别是AD、AB的中点,G、H分别在B

30、C、CD上,且BG:GC=DH:HC=1:2(1)求证:E、F、G、H四点共面;(2)设FG与HE交于点P,求证:P、A、C三点共线21在空间四边形ABCD中,H,G分别是AD,CD的中点,E,F分别边AB,BC上的点,且求证:(1)点E,F,G,H四点共面;(2)直线EH,BD,FG相交于一点22(2018新课标)在正方体中,为棱的中点,则异面直线与所成角的正切值为ABCD12345678DDCCBCBC11121314151622BDCBDDC1【答案】D【解析】当B,C,D三点共线时,A、B、C、D、E五点位置关系不确定当B,C,D三点不共线时,A、B、C、D、E五点共面故选D2【答案】

31、D3【答案】C【解析】A,和平面垂直的平面有很多,所以过平面外一点作这个平面的垂直平面个数不唯一B,在空间中,垂直的直线可能是异面直线,所以过直线外一点作这直线的垂线不是唯一的C,平面的斜线确定了,则斜线平面的射影也就确定了,所以过平面的一条斜线作这平面的垂直平面是唯一的,正确D,和直线平行的平面是不确定的,所以过直线外一点作这直线的平行平面不是唯一的故选C4【答案】C【解析】根据平面的表示方法,平面可以用希腊字母、来命名,也可以用,故A是正确;由平面的性质,平面就是每一处都平直的面,故B是正确的;而根据平面的性质,平面是无限延展的,故D是正确的,C是错误的故选C5【答案】B【解析】两条异面直

32、线的公垂线的定义是:和两条异面直线都垂直相交的直线叫做这两条异面直线的公垂线故选B学科*网6【答案】C【解析】根据等角定理:如果一个角的两边和另一个角的两边分别对应平行并且方向相同,那么这两个角的相等本题的条件是:一个角的两边和另一个角的两边分别对应平行,由于没有指出角的对应两边的方向情况,故两个角可能相等或互补故选C7【答案】B8【答案】C【解析】当三点在平面的同侧时,当三点在平面的异侧时,与相交故选C9【答案】1个或无数个【解析】当空间的三个不同的点共线时,过这三个点能确定无数个平面当空间的三个不同的点不共线时,过这三个点能确定1个平面当空间的三个不同的点,能确定1个或无数个平面故答案为:

33、1个或无数个10【答案】45【解析】正方体ABCDA1B1C1D1中,ADBC,异面直线AD与CB1所成角就是BC与CB1所成角,故BCB1为异面直线AD与CB1所成角,等腰直角三角形BCB1中,BCB1=45,故异面直线AD与CB1所成的角为45,故答案为:4511【答案】B【解析】m,n为异面直线,存在唯一一对平面,使得m,n如图所示当点P或P时,不存在过点P与m,n都平行的平面;当点P且P时,存在唯一过点P的平面,使得m,且n综上可知,过点P与m,n都平行的平面有0或1个故选B12【答案】D13【答案】C【解析】如图,过点B作BC,则AB在平面内的射影是AC然后过点A作AC的垂线,而在平

34、面内与AC平行的直线有若干条,如图中的直线c,故选C学科*网14【答案】B【解析】对于选项A,如果三条直线交于一点,则此时三条直线不一定在同一平面内,故A不对;对选项B,若四点不共面,则一定不存在三点共线,若有三点共线,则第四点与此线确定一个平面,这样就会出现四点共面,与已知条件不符合,故B正确;对于选项C,在空间中四边相等的四边形可能是空间四边形,故C不对;对于选项D,空间四边形中也存在三个角是直角的情况,故D不对故选B15【答案】D【解析】如图,三个平面有一条交线的情况,三个平面有两条交线的情况,故选D16【答案】D【解析】A选项中,若三个平面两两相交,且有三条交线,则把空间分成7或8部分

35、;故A不正确B选项中,若两个平面互相平行,另一平面与它们相交,则把空间分成6部分;故B正确C选项中,若三个平面两两相交于同一条直线,则把空间分成6部分;故C正确故选D17【答案】【解析】对于,空间四点共面,如平面四边形,其中任何三点不共线;顾错误;对于,空间四点中有三点共线,根据不共线的三点确定一个平面,得到此四点必共面;故正确;对于,空间四点中任何三点不共线,则此四点可能共面,如平面四边形;故错误;对于,空间四点不共面,如果任意三点有共线的,那么此四个点就共面,与已知矛盾故正确;故答案为:18【答案】证明详见解析19【答案】证明详见解析【解析】假设直线ME与BN共面,则AB平面MBEN,且平

36、面MBEN与平面DCEF交于EN由已知,两正方形不共面,故AB平面DCEF又ABCD,所以AB平面DCEF,而EN为平面MBEN与平面DCEF的交线,所以ABEN又ABCDEF,所以ENEF,这与ENEF=E矛盾,故假设不成立所以ME与BN不共面,它们是异面直线20【答案】证明详见解析21【答案】证明详见解析【解析】(1)如图所示,空间四边形ABCD中,H,G分别是AD,CD的中点,HGAC;又,EFAC,EFHG,E、F、G、H四点共面;(2)设EH与FG交于点P,EH平面ABD,P在平面ABD内,同理P在平面BCD内,且平面ABD平面BCD=BD,点P在直线BD上,直线EH,BD,FG相交于一点22【答案】C【解析】在正方体中,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则故选C学科&网点睛:求异面直线所成角主要有以下两种方法:(1)几何法:平移两直线中的一条或两条,到一个平面中;利用边角关系,找到(或构造)所求角所在的三角形;求出三边或三边比例关系,用余弦定理求角(2)向量法:求两直线的方向向量;求两向量夹角的余弦;因为直线夹角为锐角,所以对应的余弦取绝对值即为直线所成角的余弦值