ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.10MB ,
资源ID:91096      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-91096.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题1.1 集合-20届高中数学同步讲义人教版(必修1))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题1.1 集合-20届高中数学同步讲义人教版(必修1)

1、第一章 集合与函数概念1.1 集合一、集合的概念1集合与元素一般地,我们把_统称为元素,用小写拉丁字母表示把_组成的总体叫做集合,用大写拉丁字母表示说明:组成集合的元素可以是数、点、图形、多项式,也可以是人或物等2元素与集合的关系如果是集合的元素,就说属于集合,记作_;如果不是集合中的元素,就说不属于集合,记作_学科网注意:与取决于元素a是否是集合A中的元素根据集合中元素的确定性可知,对任何元素a与集合A,与这两种情况中必有一种且只有一种成立3集合中元素的特征(1)_:集合中的元素是否属于这个集合是确定的,即任何对象都能明确它是或不是某个集合的元素,两者必居其一这是判断一组对象是否构成集合的标

2、准(2)_:给定集合的元素是互不相同的即对于一个给定的集合,它的任何两个元素都是不同的(3)_:集合中各元素间无先后排列的要求,没有一定的顺序关系4集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的二、常用的数集及其记法1全体_组成的集合称为非负整数集(或自然数集),记作N;2所有_组成的集合称为正整数集,记作或;3全体_组成的集合称为整数集,记作Z;4全体_组成的集合称为有理数集,记作Q;5全体_组成的集合称为实数集,记作R易错点:为非负整数集(即自然数集),包括0,而表示正整数集,不包括0,注意区分三、集合的表示方法1列举法把集合的元素_出来,并用花括号“”括起来表示集合的

3、方法叫做列举法注意:(1)用列举法表示的集合,集合中的元素之间用“,”隔开,另外,集合中的元素必须满足确定性、互异性、无序性(2)“”含有“所有”的含义,因此用表示所有实数是错误的,应是2描述法用集合所含元素的_表示集合的方法称为描述法具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的_说明:用描述法表示集合应写清楚该集合中的代表元素,即代表元素是数、有序实数对、集合,还是其他形式四、Venn图,子集1Venn图的概念我们经常用平面上_的内部代表集合,这种图称为Venn图说明:(1)表示集合的Venn图的边界是封闭曲线,

4、它可以是圆、矩形、椭圆,也可以是其他封闭曲线(2)Venn图表示集合时,能够直观地表示集合间的关系,但集合元素的公共特征不明显2子集(1)子集的概念一般地,对于两个集合A,B,如果集合A中_都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作(或),读作“A含于B”(或“B包含A”) 用Venn图表示AB如图所示:(2)子集的性质任何一个集合是它自身的子集,即传递性,对于集合,如果,且,那么五、从子集的角度看集合的相等如果集合是集合的_(),且集合是集合的_(),此时,集合与集合中的元素是一样的,因此,集合与集合相等,记作用Venn图表示如图所示六、真子集1真子集的概

5、念如果集合,但存在元素_,我们称集合是集合的真子集,记作(或)如果集合是集合的真子集,在Venn图中,就把表示的区域画在表示的区域的内部如图所示:2真子集的性质对于集合,如果,那么辨析:子集与真子集的区别:若,则或;若,则七、空集1空集的概念我们把_任何元素的集合叫做空集,记作,并规定:空集是任何集合的子集2空集的性质(1)空集是任何集合的_,即;(2)空集是任何非空集合的_,即注意:空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解八、并集1并集的概念一般地,由_属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记

6、作:_(读作“A并B”),即用Venn图表示如图所示: (1) (2) (3)由上述图形可知,无论集合A,B是何种关系,恒有意义,图中阴影部分表示并集注意:并集概念中的“或”指的是只需满足其中一个条件即可,这与生活中的“或”字含义不同生活中的“或”字是或此或彼,必居其一,而并集中的“或”字可以是兼有的2并集的性质对于任意两个集合A,B,根据并集的概念可得:(1),; (2);(3); (4)九、交集1交集的概念一般地,由_的所有元素组成的集合,称为A与B的交集,记作:_(读作“A交B”),即用Venn图表示如图所示: (1)A与B相交(有公共元素) (2),则 (3)A与B相离()注意:(1)

7、交集概念中的“且”即“同时”的意思,两个集合的交集中的元素必须同时是两个集合的元素(2)定义中的“所有”是指集合A和集合B中全部的公共元素,不能是一部分公共元素2交集的性质(1); (2);(3); (4)十、全集与补集1全集的概念一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U,是相对于所研究问题而言的一个相对概念学+科网说明:“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的例如:我们常把实数集看作全集,而当我们在整数范围内研究问题时,就把整数集看作全集2补集的概念对于一个集合A,由全集U中_集合A的所有元素组成的集合称为集

8、合A相对于全集U的补集,简称为集合A的补集,记作,即用Venn图表示如图所示: 说明:(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念(2)若,则或,二者必居其一3全集与补集的性质设全集为U,集合A是全集U的一个子集,根据补集的定义可得:(1); (2); (3);(4); (5)K知识参考答案:一、1研究对象 一些元素 2 3确定性 互异性 无序性二、1非负整数 2正整数 3整数 4有理数 5实数三、1一一列举 2共同特征 共同特征四、1封闭曲线 2(1)任意

9、一个元素 五、子集 子集 六、1,且 七、1不含 2(1)子集 (2)真子集八、1所有 AB 九、1属于集合A且属于集合B AB 十、2不属于K重点1并集与交集的概念,补集的有关运算及数轴的应用,数形结合的思想;2运用集合的两种常用表示方法列举法与描述法正确表示一些简单的集合;K难点1能利用Venn图表达集合间的关系;2集合中元素的三个特性;K易错1在分析有关集合问题时,要注意空集的地位;2判断集合之间的关系时,要从元素入手1集合的概念判断指定的对象的全体能否构成集合,关键在于能否找到一个明确的标准,使得对于任何一个对象,都能确定它是否是给定集合中的元素注意:构成集合的元素除常见的数、式、点等

10、数学对象外,还可以是其他任意确定的对象【例1】下列各组对象中不能构成集合的是A正三角形的全体B所有的无理数C高一数学第一章的所有难题D不等式2x31的解【答案】C【解析】C中的难题并没有确定的标准,因此不满足集合中元素的确定性,不能构成集合A,B,D中的对象满足集合中元素的确定性、互异性和无序性,能够构成集合【名师点睛】集合中元素的三个特性:(1)确定性:集合中的元素是确定的,即任何一个对象都必须明确它是或不是某个集合的元素,两者必居其一(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任意两个元素都是不同的(3)无序性:集合中元素的排列无先后顺序,任意调换集合中元素的位

11、置,集合不变判断指定的对象能不能组成集合,关键是看作为集合的元素是否具有确定性,也就是能否找到一个明确的标准2元素与集合之间的关系元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征若集合是用描述法表示的,则集合中的元素一定满足集合中元素的共同特征,可据此列方程(组)或不等式(组)求解参数;若,且集合是用列举法表示的,则a一定等于集合A的其中一个元素,由此可列方程(组)求解【例2】已知,则有ABCD【答案】D【解析】设,则,即,同理可得,【名师点睛】解决本题的关键是根据集合M中元素的一般形式分别判断1

12、,0,2,是否为该集合中的元素,即分别判断方程=1,0,2,是否有整数解3集合的表示方法对于元素较少的集合宜采用列举法表示,用列举法表示集合时,要求元素不重复、不遗漏、不计次序;对于元素较多的集合宜采用描述法表示但是对于有些元素较多的集合,如果其中的元素具有规律性,那么也可以用列举法表示,常用省略号表示多个元素但要注意不要忽略集合中元素的代表形式【例3】选择适当的方法表示下列集合:(1)1和70组成的集合;(2)大于1且小于70的自然数组成的集合(3)大于1且小于70的实数组成的集合(4)平面直角坐标系中函数图象上的所有点组成的集合【答案】答案详见解析(4)设平面直角坐标系中函数图象上的所有点

13、组成的集合为E,函数图象上的点可以用坐标表示,则有【名师点睛】由于本题(2)中的集合B中的元素是大于1且小于70的自然数,具有规律性,所以还可以表示为B2,3,69注意:由于用以表示集合的大括号已有概括“全体元素”之意,因此在大括号内不应再出现“全体”、“所有”、“集”等词例如,=全体有理数集,=实数集都是错误的4集合相等从集合相等的概念入手,寻找两个集合中元素之间的关系,看一个集合中的元素与另一集合中的哪个元素相等,一般需要分类讨论,在求出参数值后,要注意检验是否满足集合中元素的互异性及是否使有关的代数式有意义【例4】已知集合M中含有三个元素2,a,b,集合N中含有三个元素2a,2,且两集合

14、相等,求a,b的值【答案】或【名师点睛】(1)对于列举法给出的集合,若两个集合相等,则它们所含元素完全相同,与元素的排列顺序无关,由此可列出方程或方程组因为集合中的元素具有无序性,所以在建立方程(组)的时候,要注意分类讨论,同时要对最后结果进行检验,以免与集合中元素的互异性相矛盾(2)对于描述法给出的集合,要判断两集合是否相等,要判断两个集合的代表元素是否一致,及代表元素所满足的条件是否一致,若都一致,则两集合相等5判断两个集合之间的关系(1)从集合关系的定义入手,对两个集合进行分析,首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则AB,否则A不是B的子集;其次,判断另一个集合B中

15、的任意元素是否属于第一个集合A,若是,则BA,否则B不是A的子集;若既有AB,又有BA,则AB(2)确定集合是用列举法还是描述法表示的,对于用列举法表示的集合,可以直接比较它们的元素;对于用描述法表示的集合,可以对元素性质的表达式进行比较,若表达式不统一,要先将表达式统一,然后再进行判断也可以利用数轴或Venn图进行快速判断【例5】指出下列各组中两个集合的包含关系:(1),;(2),;(3),【答案】(1);(2);(3)【解析】(1)8的约数有1,2,4,8,所以,从而有(2)中的元素都是3的倍数,中的元素都是6的倍数,对任意的,因为,所以,从而可得,从而有,设,则,故,但,所以(3)画出V

16、enn图如图所示,由图可知【名师点睛】(1)当和均成立时,最准确反映集合的关系当和均成立时,最准确反映集合的关系(2)包含、真包含关系是集合与集合之间的关系,属于关系是元素与集合之间的关系,注意区分6确定集合的子集的个数有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)注意两个特殊的子集:和自身;(3)依次按含有一个元素的子集,含有两个元素的子集,含有三个元素的子集写出子集就可避免重复和遗漏现象的发生【例6】集合的真子集个数为A7B8C15D16【答案】C【解析】方法一:中有4个元素,按真子集中所含元素的个数分类写出真子集是任何非空集合的真子集;由一个元素构成的真子集:;由两个元

17、素构成的真子集:;由三个元素构成的真子集:故集合的真子集个数为15故选C方法二:中有4个元素,则真子集个数为故选C【名师点睛】如果有限非空集合中有n个元素,则:(1)集合的子集个数为;(2)集合的真子集个数为;(3)集合的非空子集个数为;(4)集合的非空真子集个数为7集合的交、并、补运算(1)“”是指所有属于集合A或属于集合B的元素并在一起所构成的集合注意对概念中 “所有”的理解:不能认为“”是由A中的所有元素和B中的所有元素组成的集合,即简单拼凑,要满足集合中元素的互异性,A与B的公共元素只能作并集中的一个元素(2)“”是指属于集合A且属于集合B的所有元素组成的集合注意对概念中“且”的理解:

18、不能仅认为中的任意元素都是A和B的公共元素,它同时还表示集合A与B的公共元素都属于,而且并不是任何两个集合都有公共元素,当集合A和集合B没有公共元素时,(3)全集与补集的性质:一个集合与其补集的并集是全集,即;一个集合与其补集的交集是空集,即;一个集合的补集的补集是其本身,即;空集的补集是全集,即;全集的补集是空集,即若,则;反之,若,则;若,则;反之,若,则;德摩根定律:并集的补集等于补集的交集,即;交集的补集等于补集的并集,即(4)解决集合的混合运算时,一般先运算括号内的部分,如求时,先求出,再求交集;求时,先求出,再求补集【例7】设集合,则ABCD(2)已知集合,则ABCD(3)已知全集

19、,则集合ABCD【答案】(1)C;(2)C;(3)D【名师点睛】(1)集合表示关于的方程的解集(2)解决与不等式有关的集合问题时,常借用数轴求解,要注意端点值能否取到1下列选项正确的是A0N*BRC1QD0Z2在下列命题中,不正确的是A10,1,2B0,1,2C0,1,20,1,2D0,1,2=2,0,13下列哪组对象不能构成集合A所有的平行四边形B高一年级所有高于170厘米的同学C数学必修一中的所有难题D方程x24=0在实数范围内的解4已知集合A=2,3,下列说法正确的是A2AB2AC5AD3A5集合3,x,x22x中,x应满足的条件是Ax1Bx0Cx1且x0且x3Dx1或x0或x36已知集

20、合A=2,1,B=m2m,1,则A=B,则实数m=A2B1C2或1D47集合A=x|2x2,B=0,2,4,则AB=A0B0,2C0,2D0,1,28已知集合A=1,2,3,B=x|x2x21,则AABACDA15设A1,1=0,1,1,则满足条件的集合A共有个A1B2C3D416设A=x|2x6,B=x|2axa+3,若BA,则实数a的取值范围是A1,3B3,+)C1,+)D(1,3)17如图所示的韦恩图中,若A=x|0x1,则阴影部分表示的集合为Ax|0x2Bx|1218若全集U=1,0,1,2,P=xZ|x2x20,则UP=A0,1B0,1C1,2D1,0,219已知集合,则图中阴影部分

21、表示的集合为A1B1,0C0,1D1,0,120设全集U=xN|x9,集合A=2,5,8,9,B=1,4,6,7,9,则图中阴影部分表示的集合为A1,4,6B1,4,7C1,4,9D1,4,6,721已知集合A是由0,m,m23m+2三个元素构成的集合,且2A,则实数m为_22由实数t,|t|,t2,t,t3所构成的集合M中最多含有_个元素23设A=x|1x4,B=x|xa0,若AB,则a的取值范围是_24已知集合A=0,1,B=1,0,a+3,且AB,则a等于_25已知1A1,2,3,则这样的集合A有_个学科+网26已知aR,bR,若a,1=a2,a+b,0,则a2019+b2019=_27

22、已知集合A=a,b,2,B=2,b2,2a,且A=B,则a=_28已知集合A=x|2x5,B=x|m+1x2m1若AB=A,求实数m的取值范围29已知集合A=x|x4,B=x|2axa+3,若BA,求实数a的取值范围30(2018新课标)已知集合A=1,3,5,7,B=2,3,4,5,则AB=A3B5C3,5D1,2,3,4,5,731(2018天津)设集合A=1,2,3,4,B=1,0,2,3,C=xR|1x0,则RA=Ax|1x2Bx|1x2Cx|x2Dx|x1x|x233(2018新课标)已知集合A=0,2,B=2,1,0,1,2,则AB=A0,2B1,2C0D2,1,0,1,234(2

23、018浙江)已知全集U=1,2,3,4,5,A=1,3,则UA=AB1,3C2,4,5D1,2,3,4,535(2018北京)已知集合A=x|x|2,B=2,0,1,2,则AB=A0,1B1,0,1C2,0,1,2D1,0,1,236(2018新课标)已知集合A=x|x10,B=0,1,2,则AB=A0B1C1,2D0,1,237(2018新课标)已知集合A=(x,y)|x2+y23,xZ,yZ),则A中元素的个数为A9B8C5D438(2018北京)已知集合A=x|x|2,B=2,0,1,2,则AB=A0,1B1,0,1C2,0,1,2D1,0,1,239(2018天津)设全集为R,集合A=

24、x|0x2,B=x|x1,则A(RB)=Ax|0x1Bx|0x1Cx|1x2Dx|0x240(2018江苏)已知集合A=0,1,2,8,B=1,1,6,8,那么AB=_123456789101112131415DACBCCBCCBCCBBD161718192030313233343536373839CCCBDCCBACACAAB1【答案】D【解析】在A中,0N*,故A错误;在B中,R,故B错误;在C中,1Q,故C错误;在D中,0Z,故D正确故选D2【答案】A【解析】在A中,10,1,2,故A错误;在B中,是0,1,2的子集,故B正确;在C中,0,1,2是0,1,2的子集,故C正确;在D中,0,

25、1,2=0,1,2,故D正确故选A3【答案】C【解析】所有的平行四边形满足集合元素的确定性,互异性,可以构成集合,高一年级所有高于170厘米的同学,满足集合元素的确定性,互异性,可以构成集合,数学必修一中的所有难题,不满足集合元素的确定性,不能构成集合,方程x24=0在实数范围内的解,满足集合元素的确定性,互异性,可以构成集合,故选C4【答案】B【解析】集合A=2,3,2A,3A,5A,故选B5【答案】C【解析】集合3,x,x22x中,x22x3,且x22xx,且x3,解得x3且x1且x0,故选C6【答案】C【解析】集合A=2,1,B=m2m,1,A=B,m2m=2,解得m=1或m=2故选C7

26、【答案】B【解析】A=x|2x2,B=0,2,4,AB=0,2故选B8【答案】C【解析】集合A=1,2,3,B=x|x2x20,xZ=x|1xa+3,解得a3;当B时,解得1a3;a的取值范围是a|1a3,或x3=a|a1,故选C17【答案】C【解析】A=x|0x1,设全集U=AB=x|x0,AB=x|1x2,则阴影部分为U(AB)=x|0x1或x2故选C18【答案】C【解析】全集U=1,0,1,2,P=xZ|x2x20=xZ|1x2=0,1,则UP=1,2故选C19【答案】B【解析】由Venn图知阴影部分对应的集合为AB,由|x1|2得2x12,得1x3,即M=1,0,1,2,3,由2x2,

27、得3x1,即P=(3,1),则MP=1,0,故选B20【答案】D【解析】全集U=xN|x9=0,1,2,3,4,5,6,7,8,9,集合A=2,5,8,9,B=1,4,6,7,9,图中阴影部分表示的集合为:B(CUA)=1,4,6,7,90,1,3,4,6,7=1,4,6,7故选D21【答案】3【解析】由题意知,m=2或m23m+2=2,解得m=2或m=0或m=3,经验证,当m=0或m=2时,不满足集合中元素的互异性,当m=3时,满足题意故答案为:322【答案】4【解析】由实数t,|t|,t2,t,t3所构成的集合M中,由于|t|至少与t和t中的一个相等,故集合M中至多有4个元素故答案为:42

28、3【答案】4,+)【解析】A=x|1x4,B=x|xa0=x|xa,AB,a4,故答案为:4,+)24【答案】2【解析】集合A=0,1,B=1,0,a+3,且AB,a+3=1,解得a=2故答案为:227【答案】0或【解析】集合A=a,b,2,B=2,b2,2a,且A=B,又根据集合元素的互异性,所以有或,解得或,故a=0或故答案为:0或28【答案】(,3【解析】若AB=A,则BA,分两种情况考虑:(1)若B不为空集,可得m+12m1,解得:m2,BA,A=x|2x5,B=x|m+1x2m1,解得:m2,综上,实数m的范围为(,329【答案】x|a4或2a3【解析】集合A=x|x4,B=x|2a

29、xa+3,BA,当B=时,2aa+3,解得a3,成立;当B时,a+34,且2aa+3,解得a4或2a3实数a的取值范围是x|a4或2a330【答案】C【解析】集合A=1,3,5,7,B=2,3,4,5,AB=3,5故选C33【答案】A【解析】集合A=0,2,B=2,1,0,1,2,则AB=0,2故选A34【答案】C【解析】根据补集的定义,UA是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件UA=2,4,5,故选C35【答案】A【解析】集合A=x|x|2=x|2x2,B=2,0,1,2,AB=0,1,故选A36【答案】C【解析】A=x|x10=x|x1,B=0,1,2,AB=x|x10,1,2=1,2故选C37【答案】A【解析】当x=1时,y22,得y=1,0,1,当x=0时,y23,得y=1,0,1,当x=1时,y22,得y=1,0,1,即集合A中元素有9个,故选A38【答案】A【解析】A=x|x|2=x|2x2,B=2,0,1,2,则AB=0,1,故选A39【答案】B【解析】A=x|0x2,B=x|x1,RB=x|x1,A(RB)=x|0x1故选B40【答案】1,8【解析】A=0,1,2,8,B=1,1,6,8,AB=0,1,2,81,1,6,8=1,8,故答案为:1,8