ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:294.39KB ,
资源ID:90655      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-90655.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年湖南省中考数学真题分类汇编 专题4 三角形(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年湖南省中考数学真题分类汇编 专题4 三角形(原卷版)

1、2019湖南省11地市中考数学7大专题分类解析汇编专题04 三角形一、选择题1(2019湖南邵阳)如图,以点O为位似中心,把ABC放大为原图形的2倍得到ABC,以下说法中错误的是()A ABCABCB点C、点O、点C三点在同一直线上CAO:AA=1:2DABAB2(2019湖南益阳)已知M、N是线段AB上的两点,AMMN2,NB1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则ABC一定是()A锐角三角形B直角三角形C钝角三角形D等腰三角形3(2019湖南益阳)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动如图

2、,在桥外一点A测得大桥主架与水面的交汇点C的俯角为,大桥主架的顶端D的仰角为,已知测量点与大桥主架的水平距离ABa,则此时大桥主架顶端离水面的高CD为()Aasin+asinBacos+acosCatan+atanD+4(2019湖南张家界)如图,在ABC中,C90,AC8,DCAD,BD平分ABC,则点D到AB的距离等于()A4B3C2D15(2019湖南湘西州)如图,在ABC中,C90,AC12,AB的垂直平分线EF交AC于点D,连接BD,若cosBDC,则BC的长是()A10B8C4D26(2019湖南邵阳)如图,在RtABC中,BAC=90,B=36,AD是斜边BC上的中线,将ACD沿

3、AD对折,使点C落在点F处,线段DF与AB相交于点E,则BED等于()A120 B108 C72 D36 7(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知A90,BD4,CF6,则正方形ADOF的边长是()AB2CD48(2019湖南常德)如图,在等腰三角形ABC中,ABAC,图中所有三角形均相似,其中最小的三角形面积为1,ABC的面积为42,则四边形DBCE的面积是()A20B22C24D26二、填空题9(2019湖南邵阳)如图,已知AD=AE,请你添加一个条件,使得ADCAEB,你添加的条件是_(不添加任何字母和

4、辅助线)10(2019湖南怀化)若等腰三角形的一个底角为72,则这个等腰三角形的顶角为 11(2019湖南株洲)如图所示,在RtABC中,ACB90,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF1,则AB 12(2019湖南常德)如图,已知ABC是等腰三角形,ABAC,BAC45,点D在AC边上,将ABD绕点A逆时针旋转45得到ACD,且点D、D、B三点在同一条直线上,则ABD的度数是 13(2019湖南娄底)如图,小明用长为 3m 的竹竿 CD 做测量工具,测量学校旗杆 AB 的高度,移动竹竿,使竹竿与旗杆的距离 DB=12m,则旗杆 AB 的高为 m14(2019湖南邵阳)

5、如图,将等边AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边AOB绕点O顺时针旋转180得到AOB,则点B的坐标是_15(2019湖南株洲)如图所示,在平面直角坐标系xOy中,在直线x1处放置反光镜,在y轴处放置一个有缺口的挡板,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB1,在直线x1处放置一个挡板,从点O发出的光线经反光镜反射后,通过缺口AB照射在挡板上,则落在挡板上的光线的长度为 三、解答题16(2019湖南益阳)已知,如图,ABAE,ABDE,ECB70,D110,求证:ABCEAD17(2019湖南邵阳)某品牌太阳能热水器的实物图和横断面示意图

6、如图所示已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直AC=40cm,ADE=30,DE=190cm,另一支架AB与水平线夹角BAD=65,求OB的长度(结果精确到1cm;温馨提示:sin650.91,cos650.42,tan652.14)18(2019湖南郴州)如图所示,巡逻船在A处测得灯塔C在北偏东45方向上,距离A处30km在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救已知B处在A处的北偏东60方向上,这时巡逻船与渔船的距离是多少?(精确到0.01km参考数据:1.414,1.732,2.449)19(2019湖南怀化)

7、如图,为测量一段笔直自西向东的河流的河面宽度,小明在南岸B处测得对岸A处一棵柳树位于北偏东60方向,他以每秒1.5米的速度沿着河岸向东步行40秒后到达C处,此时测得柳树位于北偏东30方向,试计算此段河面的宽度20(2019湖南张家界)天门山索道是世界最长的高山客运索道,位于张家界天门山景区在一次检修维护中,检修人员从索道A处开始,沿ABC路线对索道进行检修维护如图:已知AB500米,BC800米,AB与水平线AA1的夹角是30,BC与水平线BB1的夹角是60求:本次检修中,检修人员上升的垂直高度CA1是多少米?(结果精确到1米,参考数据:1.732)21(2019湖南娄底)如图,有小岛A和小岛

8、B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60,测得B的方位角为南偏东45,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向求小岛A与小岛B之间的距离(结果保留整数,参考数据:141,245)22(2019湖南岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角ACG为45,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角AEH为62.3(点D、B、F在同一水平线上,参考数据:sin62.30.89,cos62.30.46,tan62.31.9)(1)求

9、小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB23(2019湖南常德)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB25cm,AB与墙壁DD的夹角DAB37,喷出的水流BC与AB形成的夹角ABC72,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE50cm,CE130cm问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin370.60,cos370.80,tan370.75,sin720.95,cos720.31,tan723.08,sin350.57,cos350.82,tan350

10、.70)24(2019湖南衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为30,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60已知坡面CD10米,山坡的坡度i1:(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度(结果精确到0.1米)(参考数据:1.73,1.41)25(2019湖南株洲)小强的爸爸准备驾车外出启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为,且tan,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2

11、与地面l1平行(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MNl1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度26(2019湖南常德)在等腰三角形ABC中,ABAC,作CMAB交AB于点M,BNAC交AC于点N(1)在图1中,求证:BMCCNB;(2)在图2中的线段CB上取一动点P,过P作PEAB交CM于点E,作PFAC交BN于点F,求证:PE+PFBM;(3)在图3中动点P在线段CB的延长线上,类似(2)过

12、P作PEAB交CM的延长线于点E,作PFAC交NB的延长线于点F,求证:AMPF+OMBNAMPE27(2019湖南娄底)如图甲,在ABC中,ACB=90,AC=4cm,BC=3cm如果点 P 由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s连接PQ,设运动时间为t(s)(0t4),解答下列问题:(1)设APQ 的面积为 S,当 t 为何值时,S 取得最大值?S 的最大值是多少?(2)如图乙,连接 PC,将PQC 沿 QC 翻折,得到四边形 PQPC,当四边形 PQPC 为菱形时,求 t的值;(3)当 t 为何值时,APQ 是等腰三角形?28(2019湖南衡阳)如图,在等边ABC中,AB6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动设运动时间为以t(s)过点P作PEAC于E,连接PQ交AC边于D以CQ、CE为边作平行四边形CQFE(1)当t为何值时,BPQ为直角三角形;(2)是否存在某一时刻t,使点F在ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将BPM沿直线PM翻折,得BPM,连接AB,当t为何值时,AB的值最小?并求出最小值