1、专题08 图形的性质之选择题一选择题(共27小题)1(2019湖州)已知6032,则的余角是()A2928B2968C11928D119682(2019杭州)在ABC中,若一个内角等于另外两个内角的差,则()A必有一个内角等于30B必有一个内角等于45C必有一个内角等于60D必有一个内角等于903(2019金华)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A在南偏东75方向处B在5km处C在南偏东15方向5km处D在南偏东75方向5km处4(2019宁波)能说明命题“关于x的方程x24x+m0一定有实数根”是假命题的反例为()Am1Bm0Cm4Dm55(2019
2、台州)已知某函数的图象C与函数y的图象关于直线y2对称下列命题:图象C与函数y的图象交于点(,2);点(,2)在图象C上;图象C上的点的纵坐标都小于4;A(x1,y1),B(x2,y2)是图象C上任意两点,若x1x2,则y1y2其中真命题是()ABCD6(2019台州)下列长度的三条线段,能组成三角形的是()A3,4,8B5,6,10C5,5,11D5,6,117(2019金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A1B2C3D88(2019绍兴)如图,墙上钉着三根木条a,b,C,量得170,2100,那么木条a,b所在直线所夹的锐角是()A5B10C30D70
3、9(2019湖州)如图,已知在四边形ABCD中,BCD90,BD平分ABC,AB6,BC9,CD4,则四边形ABCD的面积是()A24B30C36D4210(2019宁波)已知直线mn,将一块含45角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D若125,则2的度数为()A60B65C70D7511(2019衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OCCDDE,点D、E可在槽中滑动若BDE75,则CDE的度数是()A60B65C75D8
4、012(2019宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内若知道图中阴影部分的面积,则一定能求出()A直角三角形的面积B最大正方形的面积C较小两个正方形重叠部分的面积D最大正方形与直角三角形的面积和13(2019衢州)一块圆形宣传标志牌如图所示,点A,B,C在O上,CD垂直平分AB于点D现测得AB8dm,DC2dm,则圆形标志牌的半径为()A6dmB5dmC4dmD3dm14(2019绍兴)如图,ABC内接于O,B65,C70若BC2,则的长为()ABC2D215
5、(2019金华)如图,矩形ABCD的对角线交于点O已知ABm,BAC,则下列结论错误的是()ABDCBBCmtanCAODBD16(2019湖州)如图,已知正五边形ABCDE内接于O,连结BD,则ABD的度数是()A60B70C72D14417(2019宁波)如图所示,矩形纸片ABCD中,AD6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A3.5cmB4cmC4.5cmD5cm18(2019舟山)如图,已知O上三点A,B,C,半径OC1,ABC30,切线PA交OC延长线于点P,则PA的长为()A2BC
6、D19(2019杭州)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA3,则PB()A2B3C4D520(2019台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则O的半径为()A2B3C4D421(2019金华)如图物体由两个圆锥组成其主视图中,A90,ABC105,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD22(2019温州)若扇形的圆心角为90,半径为6,则该扇形的弧长为()AB2C3D623(2019湖州)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A60cm2B65cm2C120cm2D1
7、30cm224(2019台州)如图,有两张矩形纸片ABCD和EFGH,ABEF2cm,BCFG8cm把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合当两张纸片交叉所成的角最小时,tan等于()ABCD25(2019衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形则原来的纸带宽为()A1BCD226(2019绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()ABCD27(2019绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D在点E从点A移动到点B的过程中,矩形ECFG的面积()A先变大后变小B先变小后变大C一直变大D保持不变