ImageVerifierCode 换一换
格式:DOC , 页数:29 ,大小:2.60MB ,
资源ID:90420      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-90420.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题3.3.2 函数的极值与导数-20届高中数学同步讲义(文)人教版(选修1-1))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题3.3.2 函数的极值与导数-20届高中数学同步讲义(文)人教版(选修1-1)

1、1函数极值的概念若函数在点的函数值比它在点附近其他点的函数值都小,;而且在点附近的左侧_,右侧_,就把点叫做函数的极小值点,叫做函数的极小值若函数在点的函数值比它在点附近其他点的函数值都大,;而且在点附近的左侧_,右侧_,就把点叫做函数的极大值点,叫做函数的极大值极大值点和极小值点统称为极值点,极大值和极小值统称为极值2可导函数在某点处取得极值的必要条件和充分条件必要条件:可导函数在处取得极值的必要条件是_充分条件:可导函数在处取得极值的充分条件是在两侧异号3函数极值的求法一般地,求函数的极值的方法是:解方程当时:(1)如果在附近的左侧,右侧,那么是_;(2)如果在附近的左侧,右侧,那么是_K

2、知识参考答案:1 23极大值 极小值K重点利用导数求函数极值的方法K难点函数极值的应用K易错对函数取得极值的充要条件理解不到位求函数的极值(1)求函数的极值首先要求函数的定义域,然后求的实数根,当实数根较多时,要充分利用表格,使极值点的确定一目了然(2)利用导数求极值时,一定要讨论函数的单调性,涉及参数时,必须对参数的取值情况进行讨论(可从导数值为0的几个x值的大小入手)学科&网已知函数(且),求函数的极大值与极小值【答案】见解析【解析】由题设知,令得或当时,随的变化,与的变化如下:0+00+ 极大值极小值则,当时,随的变化,与的变化如下:00+0极小值极大值则,故,【名师点睛】函数的极大值不

3、一定大于函数的极小值,极值刻画的是函数的局部性质,反映了函数在某一点附近的大小情况,极大值也可能比极小值小函数极值的应用解决利用函数的极值确定函数解析式中参数的值的问题时,通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数的值进行检验,看是否符合函数取得极值的条件已知函数在,处取得极值(1)求,的值;(2)求在点处的切线方程【答案】(1),;(2)(2),则,得又由,得从而,得所求切线方程为,即已知(1)令,求的单调区间;(2)已知在处取得极大值,求实数a的取值范围【

4、答案】(1)见解析;(2)(2)由(1)知,当时,单调递增所以当时,单调递减当时,单调递增所以在x=1处取得极小值,不合题意学科&网当时,由()知在内单调递增,可得当时,时,所以在(0,1)内单调递减,在内单调递增,所以在处取得极小值,不合题意当时,在(0,1)内单调递增,在内单调递减,所以当时,单调递减,不合题意当时,当时,单调递增,当时,单调递减,学科&网所以在处取得极大值,合题意综上可知,实数的取值范围为1函数在处取得极值,则实数的值为ABCD2函数的极值点的个数是A0B1C2D无数个3如图是的导函数的图象,现有四种说法:在上是增函数;是的极小值点;在上是减函数,在上是增函数;是的极小值

5、点以上说法正确的序号为ABCD4函数在上的极小值点为A0BCD5设,若函数有大于零的极值点,则ABCD6设,若函数有大于的极值点,则ABCD7函数的极小值为_8已知函数有极大值和极小值,则实数的取值范围是_9已知函数,则函数的极大值为_10已知函数(1)求曲线在点处的切线方程;(2)求函数的极值11已知函数(为实数),(1)讨论函数的单调区间;(2)求函数的极值12已知函数在处有极值(1)求实数的值;(2)判断函数的单调性并求出单调区间13已知函数存在极小值,则实数的取值范围为ABCD14设函数满足,则当时函数A有极大值,无极小值B有极小值,无极大值C既有极大值又有极小值D既无极大值也无极小值

6、15已知,若在区间上只有一个极值点,则实数的取值范围为ABCD16已知函数,当时,函数的极值为,则_17若函数在区间内有极大值,则实数的取值范围是_18已知函数(e为自然对数的底数,)(1)当时,求函数的单调区间和极值;(2)若对于任意,都有成立,求实数的取值范围19已知函数(1)若曲线在处的切线与轴垂直,求函数的极值;(2)设,若在上单调递减,求实数的取值范围20已知函数(1)当时,求曲线在点处的切线方程;(2)设函数,讨论的单调性并判断有无极值,有极值时求出极值21(2017新课标全国II)若是函数的极值点,则的极小值为ABCD122(2018北京文)设函数(1)若曲线在点处的切线斜率为0

7、,求a;(2)若在处取得极小值,求a的取值范围23(2018新课标全国文)已知函数(1)设是的极值点求,并求的单调区间;(2)证明:当时,24(2018新课标全国)已知函数(1)讨论的单调性;(2)若存在两个极值点,证明:25(2018新课标全国)已知函数(1)若,证明:当时,;当时,;(2)若是的极大值点,求26(2017江苏)已知函数有极值,且导函数的极值点是的零点(极值点是指函数取极值时对应的自变量的值)(1)求关于的函数关系式,并写出定义域;(2)证明:;(3)若,这两个函数的所有极值之和不小于,求的取值范围1【答案】B【解析】,函数在处取得极值,则,可得故选B2【答案】A【解析】,由

8、可得,该方程无解,因此函数无极值点故选A3【答案】B4【答案】C【解析】因为,所以,令,得或,由可得;由可得或,所以函数在区间上为减函数,在区间和区间上均为增函数,所以函数的极小值点为故选C5【答案】A【解析】因为,所以,由题意知,有大于0的实根,可得,因为,所以,所以,故选A6【答案】C【解析】函数的导数为,函数有大于的极值点,即有大于的实根,所以函数与函数的图象在y轴右侧有交点,所以,故选C7【答案】【解析】,令,得,当或时,当时,所以当时,函数取极小值,且极小值是学&科网8【答案】【解析】因为,所以,又因为函数有两个极值,所以有两个不等的实数根,所以,即,解得或故实数的取值范围是9【答案

9、】10【答案】(1);(2),【解析】(1)由题意可得,故又,故曲线在点处的切线方程为,即(2)由可得或,随的变化情况如下表所示,极大值极小值,11【答案】(1)在上单调递增,在上单调递减;(2)极大值为,无极小值【解析】(1)由题意得,当时,恒成立,函数在上单调递增;当时,由可得,由可得,故函数在上单调递增,在上单调递减12【答案】(1);(2)的递减区间是,递增区间是【解析】(1)由题可得,则,所以(2)由(1)可知,则函数的定义域为,令,即,解得或(舍去),当时,单调递减,当时,单调递增所以函数的单调递减区间是,单调递增区间是13【答案】A【解析】,因为存在极小值,所以方程有两个不等的正

10、根,设为,故,所以的取值范围为,故选A14【答案】D【解析】由题意得,令,则,学科¥网因此当时,;当时,故,因此当时,恒成立,所以当时函数既无极大值也无极小值,故选D15【答案】A16【答案】【解析】,或,当时,此时函数没有极值,又,17【答案】【解析】由可得,因为函数在区间内有极值,且,所以方程在在区间内有解,即方程在区间内有解,解得或(舍去)构造函数和,由数形结合可得为函数的极大值点,故,即,则实数的取值范围是18【答案】(1)当时,的单调递增区间是,无单调递减区间,无极值;当时,的单调递减区间是,单调递増区间是,极小值为,无极大值;(2)(2)由,可得,因为,所以,即对任意恒成立,记,则

11、,因为,所以,即在上单调递增,故,所以实数的取值范围为19【答案】(1)极大值为,极小值为;(2)【解析】(1)由可得,由题意知,解得,所以,当时,或;当时,所以的单调递增区间为,单调递减区间为,所以的极大值为,极小值为学科*网(2)由可得,由在上单调递减可得在上恒成立,即在上恒成立,令,则,所以在上单调递增故,所以,故实数的取值范围是20【答案】(1);(2)见解析【分析】(1)根据导数的几何意义,求出切线的斜率,再用点斜式写出切线方程;(2)由,通过讨论确定的单调性,再由单调性确定极值(2)因为,所以,令,则,所以在上单调递增,因为,所以当时,;当时,当时,当时,单调递增;当时,单调递减;

12、当时,单调递增所以当时取到极大值,极大值是,当时取到极小值,极小值是当时,当时,单调递增;所以在上单调递增,无极大值也无极小值【名师点睛】(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值21【答案】A【解析】由题可得,因为,所以,故,令,解得或,所以在上单调递增,在上单调递减,所以

13、的极小值为,故选A【名师点睛】(1)可导函数yf(x)在点x0处取得极值的充要条件是f (x0)0,且在x0左侧与右侧f (x)的符号不同;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值学科网22【答案】(1);(2)23【答案】(1);f(x)在(0,2)单调递减,在(2,+)单调递增;(2)证明见解析【分析】(1)先确定函数的定义域,对函数求导,利用f(2)=0,求得,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a时,f(x),之后构

14、造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)g(1)=0,利用不等式的传递性,证得结果【解析】(1)f(x)的定义域为,f(x)=aex由题设知,f(2)=0,所以从而,当0x2时, 2时,0所以f(x)在(0,2)单调递减,在(2,+)单调递增(2)当a时,f(x)设g(x)=,则,当0x1时,g(x)1时,g(x)0所以x=1是g(x)的最小值点故当x0时,g(x)g(1)=0因此,当时,24【答案】(1)当时,在上单调递减,当时在上单调递减,在单调递增;(2)证明见解析【分析】(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符

15、号,从而求得函数对应的单调区间;(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果学科¥网(2)若,令得,或当时,;当时,所以在单调递减,在单调递增(2)由(1)知,存在两个极值点当且仅当由于的两个极值点满足,所以,不妨设,则由于,所以等价于设函数,由(1)知,在单调递减,又,从而当时,所以,即25【答案】(1)证明见解析;(2)(2)若,由(1)知,当时,这与是的极大值点矛盾若,设函数由于当时,故与符号相同又,故是的极大值点当且仅当是的极大值点如果,则当,且时,故不是的极大值点如果,则存在根,故当,且时,

16、所以不是的极大值点如果,则则当时,;当时,所以是的极大值点,从而是的极大值点综上,26【答案】(1),;(2)证明见解析;(3)【思路分析】(1)先求导函数的极值:,再代入原函数得,化简可得,根据极值存在条件可得;(2)由(1)得,构造函数,利用导数研究函数单调性,可得,即;(3)先求证的两个极值之和为零,利用根与系数关系代入化简即得,再研究导函数极值不小于,构造差函数,利用导数研究其单调性,在上单调递减而,故可得的取值范围【解析】(1)由,得当时,有极小值学$科网因为的极值点是的零点,所以,又,故因为有极值,故有实根,从而,即当时,故在R上是增函数,没有极值;当时,有两个相异的实根,列表如下:x+00+极大值极小值故的极值点是从而因此,定义域为(3)由(1)知,的极值点是,且,从而记,所有极值之和为,学科网因为的极值为,所以,因为,于是在上单调递减因为,于是,故,因此a的取值范围为