ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:672.50KB ,
资源ID:89932      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-89932.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题2.1 导数起源于切线曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题2.1 导数起源于切线曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(原卷版)

1、【题型综述】导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率,即【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解(1)当点P(x0,y0)是切点时,切线方程为yy0=f (x0)(xx0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P(x1,f (x1);来源:学*科*网Z*X*X*K来源:Zxxk.Com第二步:写出过P(x1,f (x1)的切线方程为yf (x1)=f (x1)(xx1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程

2、yf (x1)=f (x1)(xx1),可得过点P(x0,y0)的切线方程求曲线y=f (x)的切线方程的类型及方法(1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f (x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f (x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f (x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程(4)若曲线的切线与已知直线平行或垂直,

3、求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f (x0)求出切点坐标(x0, y0),最后写出切线方程(5)在点P处的切线即是以P为切点的切线,P一定在曲线上过点P的切线即切线过点P,P不一定是切点因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上【典例指引】例1(2013全国新课标卷节选)已知函数f(x)x2axb,g(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x+2来源:学科网()求a,b,c,d的值来源:学科网ZXXK例2设函数(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点,

4、求证:例3已知函数在点处的切线方程为来源:学科网ZXXK求函数的解析式;若对于区间上任意两个自变量的值都有,求实数的最小值;若过点可作曲线的三条切线,求实数的取值范围【新题展示】1【2019吉林一调】已知函数当时,求函数在点处的切线方程;当时,若对任意都有,求实数a的取值范围2【2019北京昌平区期末】已知函数f(x)=lnx-a()若a=-1,求曲线y=f(x)在点(1,f(1)处的切线方程;()若f(x)恒成立,求实数a的取值范围来源:Z&xx&k.Com来源:学.科.网Z.X.X.K3【2019浙江浙南名校联盟期末联考】设,函数.(I)证明:当时,对任意实数,直线总是曲线的切线; ()若

5、存在实数,使得对任意且,都有,求实数的最小值.4【2019河南省期末】已知函数.(1)若,曲线在点处的切线经过点,求的最小值;(2)若只有一个零点,且,求的取值范围.【同步训练】1设函数,若函数在处的切线方程为()求实数的值;来源:Z_xx_k.Com()求函数在上的最大值2已知函数,其导函数的两个零点为-3和0(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)求函数在区间上的最值3设函数的定义域为,若对任意,都有,则称函数为“”函数已知函数的图象为曲线,直线与曲线相切于(1)求的解析式,并求的减区间;(2)设,若对任意,函数为“”函数,求实数的最小值4已知函数(1)求的单调区间;(

6、2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若方程为实数)有两个正实数根且,求证: 5已知函数在处的切线方程为(1)若= ,求证:曲线上的任意一点处的切线与直线和直线围成的三角形面积为定值;来源:Zxxk.Com6已知函数()(1)若在处取得极大值,求实数的取值范围;(2)若,且过点有且只有两条直线与曲线相切,求实数的值7已知函数,(1)若直线是曲线与曲线的公切线,求;8已知函数(为常数),其图像是曲线(1)设函数的导函数为,若存在三个实数,使得与同时成立,求实数的取值范围;(2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由9已知函数,(1)若曲线与在公共点处有相同的切线,求实数的值;来源:Z,xx,k.Com(2)当时,若曲线与在公共点处有相同的切线,求证:点唯一;(3)若, ,且曲线与总存在公切线,求:正实数的最小值