ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:570.50KB ,
资源ID:89916      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-89916.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题2.4 极值计算先判断单调原则不能撼-2020届高考数学压轴题讲义(解答题)(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题2.4 极值计算先判断单调原则不能撼-2020届高考数学压轴题讲义(解答题)(原卷版)

1、【题型综述】函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号(2)求函数极值的方法:来源:学|科|网确定函数的定义域求导函数求方程的根检查在方程的根的左、右两侧的符号,确定极值点如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果在这个根的左、右两侧符号不变,则在这个根处没有极值来源:Z#xx#k.Com(3)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围【典例指引】例1已知函数其中当时,求曲线处的切线的斜率;w.w.w

2、.zxxk.c.o.m 当时,求函数的单调区间与极值.例2已知函数的图象在处的切线过点,.(1)若,求函数的极值点;(2)设是函数的两个极值点,若,证明:.(提示)例3已知函数在处有极值10.(1)求实数的值;(2)设,讨论函数在区间上的单调性.来源:学科网ZXXK来源:Zxxk.Com【新题展示】来源:Zxxk.Com1【2019浙江七彩联盟期中】已知函数证明:函数存在唯一的极值点,并求出该极值点;若函数的极值为1,试证明:2【2019北京石景山区期末】已知函数(1)当时,求在处的切线方程;(2)当时,若有极小值,求实数a的取值范围3【2019河南驻马店市期末】已知函数(1)求函数的单调区间

3、和的极值;(2)对于任意的,都有,求实数的取值范围.【同步训练】1设, .(1)令,求的单调区间;(2)已知在处取得极大值,求实数的取值范围.来源:Z#xx#k.Com2已知函数,在定义域内有两个不同的极值点 (I)求的取值范围;(II)求证:3已知函数()若函数在时有极值0,求常数a,b的值;()若函数在点处的切线平行于x轴,求实数b的值4已知函数, .(1)求函数在上的最值;(2)求函数的极值点.5设函数f(x)=lnx+ax2+x+1(I)a=2时,求函数f(x)的极值点;()当a=0时,证明xexf(x)在(0,+)上恒成立6已知函数,(其中,为自然对数的底数,).(1)令,求的单调区间;(2)已知在处取得极小值,求实数的取值范围.7已知函数().(1)若在其定义域内单调递增,求实数的取值范围;(2)若,且有两个极值点,(),求的取值范围.8已知函数(1)若函数在和处取得极值,求的值;来源:学#科#网(2)在(1)的条件下,当时, 恒成立,求的取值范围来源:学科网9已知函数,其中为常数.(1)当,且时,判断函数是否存在极值,若存在,求出极值点;若不存在,说明理由;(2)若,对任意的正整数,当时,求证:.来源:学.科.网Z.X.X.K来源:学科网10已知函数.(1)求函数的极值点; (2)若f(x)x2+1在(0,2)上恒成立,求实数t的取值范围.