ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:1.31MB ,
资源ID:89902      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-89902.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题3.11 切线处理情况多曲线不同法定度-2020届高考数学压轴题讲义(解答题)(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题3.11 切线处理情况多曲线不同法定度-2020届高考数学压轴题讲义(解答题)(原卷版)

1、专题11 切线处理情况多,曲线不同法定度【题型综述】圆锥曲线的切线问题有两种处理思路:思路1,导数法,将圆锥曲线方程化为函数,利用导数法求出函数在点处的切线方程,特别是焦点在轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式,即可解出切线方程,注意关于(或y)的一元二次方程的二次项系数不为0这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法.【典例指引】来源:学科网ZXXK类型一 导数法求抛物线切线例1 【2017课表1,文20】设A,B为曲线C:y=上两点,A与B的横坐标之和为4(

2、1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程【解析】类型二 椭圆的切线问题例2(2014广东20)(14分)已知椭圆的一个焦点为,离心率为.(1)求椭圆C的标准方程;(2)若动点为椭圆外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【解析】类型三 直线与椭圆的一个交点例3.【2013年高考安徽卷】已知椭圆的焦距为4,且过点.()求椭圆C的方程;()设为椭圆上一点,过点作轴的垂线,垂足为.取点,连接,过点作的垂线交轴于点.点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.【解析】类型

3、四 待定系数求抛物线的切线问题例4 【2013年高考广东卷】已知抛物线的顶点为原点,其焦点到直线的距离为设为直线上的点,过点作抛物线的两条切线,其中为切点(1) 求抛物线的方程;(2) 当点为直线上的定点时,求直线的方程;(3) 当点在直线上移动时,求的最小值【解析】【扩展链接】1. 椭圆的切线方程:椭圆上一点处的切线方程是;椭圆外一点所引两条切线方程是.2. 双曲线的切线方程:双曲线上一点处的切线方程是;双曲线上一点所引两条切线方程是.3. 抛物线的切线方程:抛物线上一点处的切线方程是;抛物线上一点所引两条切线方程是.来源:Zxxk.Com4.设抛物线的焦点为,若过点的直线分别与抛物线相切于

4、两点,则.5.设椭圆:的焦点为,若过点的直线分别与椭圆相切于两点,则.6.设双曲线:的焦点为,若过点的直线分别与椭圆相切于两点,则.【新题展示】1【2019福建龙岩质检】已知椭圆的两焦点为、,抛物线:()的焦点为,为等腰直角三角形()求的值;()已知过点的直线与抛物线交于两点,又过作抛物线的切线,使得,问这样的直线是否存在?若存在,求出直线的方程;若不存在,说明理由来源:Z_xx_k.Com【思路引导】()先写出、的坐标,利用为等腰直角三角形,求得p即可()依题意,直线l的斜率必存在,设直线l的方程为yk(x+2),可得切线l1,l2的斜率分别为,x1x24再将直线与抛物线联立,结合韦达定理解

5、得k即可2【2019河南九师联盟2月质检】已知点是抛物线:的焦点,点是抛物线上的定点,且(1)求抛物线的方程;(2)直线与抛物线交于不同两点,且(为常数),直线与平行,且与抛物线相切,切点为,试问的面积是否是定值若是,求出这个定值;若不是,请说明理由【思路引导】(1)先设出点M的坐标,表示出,求得M坐标,带入抛物线方程,求得p的值,得出结果(2)先设直线AB的方程,联立求解得AB中点Q的坐标为,再设切线方程,联立得切点的坐标为,再利用面积公式和已知条件,进行计算化简可得结果3【2019东北师大附中、重庆一中、吉大附中、长春十一中联考】已知椭圆的离心率为,右焦点为,且椭圆过点(I)求椭圆的方程;

6、(II)若点分别为椭圆的左右顶点,点是椭圆上不同于的动点,直线与直线x=a交于点,证明:以线段为直径的圆与直线相切【思路引导】(I)设椭圆的焦距为,依题意,列出方程组,求得的值,即可求解椭圆的标准方程;(II)方法一 设点的坐标为,当时,得到直线的方程,求得点的坐标, 进而求得线段的中点为,利用点到直线的距离等于半径,即可证明;又由可得点Q的坐标,求得线段中点的坐标,利用圆心到直线的距离等于半径,可作出证明方法二:依题意,直线的斜率存在,设直线的方程为,联立方程组,利用根与系数的关系,求得点P的坐标,进而求得以为直径的圆的圆心坐标为,半径为,再由直线与圆的位置关系的判定,即可得到结论4【201

7、9河南洛阳一模】已知圆,圆心在抛物线上,圆过原点且与的准线相切(1)求抛物线的方程;(2)点,点(与不重合)在直线上运动,过点作抛物线的两条切线,切点分别为,求证:【思路引导】(1)根据圆和抛物线的位置关系,以及圆和准线相切这一条件得到方程,从而得到结果;(2)求出两条切线方程,再抽出方程,其两根为切点的横坐标,通过韦达定理得到结果即可5【2019江苏如皋调研(三)】在平面直角坐标系中,已知定点,点在轴上运动,点在轴上运动,点为坐标平面内的动点,且满足,(1)求动点的轨迹的方程;(2)过曲线第一象限上一点(其中)作切线交直线于点,连结并延长交直线于点,求当面积取最大值时切点的横坐标【思路引导】

8、(1)设,因为,所以,得(2)切线:,将代入得,直线:,将代入得,所以,由,得,设,求取最小值时,的取值即为所求【同步训练】1已知椭圆与抛物线y2=2px(p0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|1,且椭圆与抛物线的交点Q满足|QF2|=(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A、B两点,求此切线在x轴上的截距的取值范围【思路点拨】(1)由抛物线的性质,求得x=1是抛物线y2=2px的准线,则,求得p的值,求得焦点坐标,代入抛物线方程求得Q点坐标,利用椭圆的定义,即可求得a的值,由b2=a2c2=8,即可求得椭圆方程;(2)将

9、直线分别代入抛物线,由=0,求得km=1,将直线方程代入椭圆方程,求得0,代入即可求得m的取值范围,切线在x轴上的截距为,又,即可求得切线在x轴上的截距的取值范围【详细解析】2.(2017鸡泽县校级模拟)已知椭圆C:+=1(ab0)的离心率为,其中一个顶点是双曲线=1的焦点(1)求椭圆C的标准方程;(2)过点P(0,3)的直线l与椭圆C相交于不同的两点A,B,过点A,B分别作椭圆的两条切线,求其交点的轨迹方程【思路点拨】(1)由椭圆的离心率为,其中一个顶点是双曲线=1的焦点,旬出方程组求出a,b,c,由此能求出椭圆C的标准方程(2)当直线l的斜率存在时,设直线l的方程为y=kx+3,设A(x1

10、,y1),B(x2,y2),求出椭圆在点A处的切线方程为=1,椭圆在点B处的切线方程为=1,联立,得y=,求出交点的轨迹方程为y=当直线l的斜率不存在时,无交点由此能过求出过点A,B所作椭圆的两条切线的交点的轨迹方程【详细解析】3.设椭圆C:+=1(ab0),定义椭圆的“伴随圆”方程为x2+y2=a2+b2;若抛物线x2=4y的焦点与椭圆C的一个短轴重合,且椭圆C的离心率为(1)求椭圆C的方程和“伴随圆”E的方程;(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点证明:PAPB;若直线OP,OQ的斜率存在,设其分别为k1,k

11、2,试判断k1k2是否为定值,若是,求出该值;若不是,请说明理由【思路点拨】(1)由抛物线的方程,求得b的值,利用离心率公式,即可求得a的值,求得椭圆方程;(2)设直线y=kx+m,代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得kPAkPB=1,即可证明PAPB;将直线方程代入圆方程,利用韦达定理及直线的斜率公式求得k1k2=,代入即可求得k1k2=【详细解析】4.左、右焦点分别为F1、F2的椭圆C:+=1(ab0)经过点Q(0,),P为椭圆上一点,PF1F2的重心为G,内心为I,IGF1F2(1)求椭圆C的方程;(2)M为直线xy=4上一点,过点M作椭圆C的两条切线MA、MB,A、B为

12、切点,问直线AB是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由【思路点拨】(1)由过点Q,则b=,求得,PF1F2的重心为G点坐标,由IGF1F2,|y0|=3r,根据三角形的面积公式可知a=2c,即可求得a和b的值,求得椭圆方程;(2)利用椭圆的切线发浓缩,求得直线AB的方程,由点M为直线xy=4上,代入整理即可求得定点坐标【详细解析】5.平面直角坐标系xoy中,椭圆C1:+=1(ab0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6(1)求椭圆的方程;(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与

13、椭圆C1相交于C,D两点,求弦|CD|的最大值【思路点拨】(1)由椭圆的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6,列出方程组,求出a,b,由此能求出椭圆方程(2)设直线AB为:y=kx+m,由,得x24kx4m=0,由此利用韦达定理、直线垂直推导出直线AB过抛物线C1的焦点F,再由,得(1+2k2)x2+4kx2=0,由此利用弦长公式能求出弦|CD|的最大值【详细解析】6.已知椭圆C:(ab0)的上、下两个焦点分别为F1,F2,过F1的直线交椭圆于M,N两点,且MNF2的周长为8,椭圆C的离心率为(1)求椭圆C的标准方程;(2)已知O为坐标原点

14、,直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1Ml,F2Nl,求四边形F1MNF2面积S的最大值来源:学科网ZXXK【思路点拨】(1)由MNF2的周长为8,求出a=2,再由,求出b,由此能求出椭圆C的标准方程(2)将直线l的方程y=kx+m代入到椭圆方程中,得(4+k2)x2+2kmx+m24=0由直线与椭圆仅有一个公共点,利用根的判别式求出m2=4+k2由此利用弦长公式,结合已知条件能求出四边形F1MNF2面积的最大值来源:学科网【详细解析】7.已知A,B分别是椭圆 的长轴与短轴的一个端点,F1,F2分别是椭圆C的左、右焦点,D椭圆上的一点,DF1,F2的

15、周长为(1)求椭圆C的方程;(2)若P是圆x2+y2=7上任一点,过点作P椭圆C的切线,切点分别为M,N,求证:PMPN【思路点拨】(1)由2a+2c=6,b2+c2=a2,即可求得a和b的值,即可求得椭圆方程;(2)分类讨论,当切线PM斜率不存在或者为零时,根据对称性即可求得PMPN;当斜率不为零时,分别求得直线PM,PN的方程,由=0即可求得k1,k2是方程的两个根,则,则PMPN【详细解析】8.已知圆M:(xa)2+(yb)2=9,M在抛物线C:x2=2py(p0)上,圆M过原点且与C的准线相切() 求C的方程;() 点Q(0,t)(t0),点P(与Q不重合)在直线l:y=t上运动,过点

16、P作C的两条切线,切点分别为A,B求证:AQO=BQO(其中O为坐标原点)【思路点拨】(1)由圆M与抛物线准线相切,得,且圆过又圆过原点,故,可得,解得p=4,即可(2) 设A(x1,y1),B(x2,y2),P(m,t),可得,即x1,x2为方程x22mx4t=0的两根,所以x1+x2=2m,x1x2=4t,可得,化简=可证得AQO=BQO【详细解析】9.已知椭圆C:+=1(ab0)的长轴长为4,离心率为,右焦点为F(1)求椭圆C的方程;(2)直线l与椭圆C相切于点P(不为椭圆C的左、右顶点),直线l与直线x=2交于点A,直线l与直线x=2交于点B,请问AFB是否为定值?若不是,请说明理由;

17、若是,请证明【思路点拨】(1)由2a=4,离心率e=,b=即可求得a和b,即可求得椭圆C的方程;(2)l的斜率为0时,AFB为直角,则AFB为定值,当斜率不为0时,将切点代入椭圆方程,求得交点坐标,求得AF和BF的斜率kAF及kBF,即可求得kAFkBF=1,即可求得AFB为定值【详细解析】10.已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点(1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求ABM的外接圆方程(2)若直线l与椭圆+=1的交点为C,D,问是否存在这样的直线l使|AF|CF|=|BF|DF|,若存在,求出l的方程;若不存在,说明理由【思路点拨】(1)设

18、,直线AB:,从而得到过A,B,M的圆是以AB为直径的圆,由此结合已知条件能求出圆的方程(2)设,由此利用韦达定理,结合已知条件能求出满足条件的直线方程【详细解析】11.在平面直角坐标系中,已知点F(1,0),直线l:x=1,动直线l垂直l于点H,线段HF的垂直平分线交l于点P,设点P的轨迹为C(1)求曲线C的方程;(2)以曲线C上的点P(x0,y0)(y00)为切点作曲线C的切线l1,设l1分别与x,y轴交于A,B两点,且l1恰与以定点M(a,0)(a2)为圆心的圆相切,当圆M的面积最小时,求ABF与PAM面积的比【思路点拨】(1)由丨PH丨=丨PF丨,根据抛物线的定义,点P的轨迹是以l为准

19、线,F为焦点的抛物线,即可求得抛物线方程;(2)由y0时,求导,求得切线斜率,利用点斜式方程即可求得切线方程,取得A和B点坐标,利用点到直线的距离公式,根据基本不等式的性质,当P(a2,2)时,满足题意的圆M的面积最小,求得A和B点坐标,利用三角形的面积公式即可求得ABF与PAM面积的比【详细解析】12.在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上.(1)求椭圆的方程;(2)设直线同时与椭圆和抛物线:相切,求直线的方程.【思路点拨】(1)因为椭圆C1的左焦点为F1(1,0),所以c=1,点P(0,1)代入椭圆,得b=1,由此能求出椭圆C1的方程;(2)设直线l的方程为y=kx+m,由,得(1+2k2)x2+4kmx+2m22=0因为直线l与椭圆C1相切,所以=0,得到两个变量的等量关系再由直线和抛物线相切,联立方程,运用判别式为0,再构造两个变量的等量关系,从而解出两个变量的值,由此能求出直线l的方程【详细解析】