ImageVerifierCode 换一换
格式:DOCX , 页数:34 ,大小:1.26MB ,
资源ID:89341      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-89341.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版2020中考数学专项复习教案+巩固练习(提高):圆的有关概念、性质与圆有关的位置关系)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版2020中考数学专项复习教案+巩固练习(提高):圆的有关概念、性质与圆有关的位置关系

1、圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活【知识网络】 【考点梳理】考点一、圆的有关概念及性质1圆的有关概念 圆、圆心、半径、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧; 三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角要点诠释:等弧:在同圆或等圆中,能够互

2、相重合的弧叫做等弧2圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性3圆的确定 不在同一直线上的三个点确定一个圆要点诠释:圆心确定圆的位置,半径确定圆的大小4垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧要点诠释:在图中(1)直径CD,(2)CDAB,(3)AMMB,(4),(5)若上述5个条件有2个成立,则另外3个也成立因此,垂径定理也称“五二三定理”即知二推三 注意:(1)(3)作条件时,应限制AB不能为直径

3、5圆心角、弧、弦之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等6圆周角 圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径要点诠释:圆周角性质的前提是在同圆或等圆中7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形 (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于

4、它相邻内角的对角)考点二、与圆有关的位置关系1点和圆的位置关系 设O的半径为r,点P到圆心的距离OPd,则有:点P在圆外dr;点P在圆上dr; 点P在圆内dr要点诠释:圆的确定:过一点的圆有无数个,如图所示过两点A、B的圆有无数个,如图所示经过在同一直线上的三点不能作圆不在同一直线上的三点确定一个圆如图所示2直线和圆的位置关系(1)切线的判定 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 (会过圆上一点画圆的切线)(2)切线的性质 切线的性质定理 圆的切线垂直于过切点的半径(3)切线长和切线长定理 切线长 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线

5、长切线长定理 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角要点诠释:直线l是O的切线,必须符合两个条件:直线l经过O上的一点A;OAl(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径)

6、.(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1) 到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分BAC、ABC、ACB; (3)内心在三角形内部.3圆和圆的位置关系 (1)基本概念 两圆相离、相切、外离、外切、相交、内切、内含的定义(2)请看下表:要点诠释:相切包括内切和外切,相离包括外离和内含其中相切和相交是重点 同心圆是内含的特殊情况 圆与圆的位置关系可以从两个圆的相对运动来理解 “R-r”时

7、,要特别注意,Rr考点三、与圆有关的规律探究1和圆有关的最长线段和最短线段 了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述 (1)圆中最长的弦是直径如图,AB是O的直径,CD为非直径的弦,则ABCD,即直径AB是最长的弦过圆内一点最短的弦,是与过该点的直径垂直的弦,如图,P是O内任意一点,过点P作O的直径AB,过P作弦CDAB于P,则CD是过点P的最短的弦 (2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上如图所示,P在O外,连接PO交O于A,延长PO交O于B,则在点P与O上各点连接的线段中,PB最长,PA最短 (3)圆内一点

8、与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上如图所示,P为O内一点,直径过点P,交O于A、B两点,则PB最长、PA最短2与三角形内心有关的角(1)如图所示,I是ABC的内心,则BIC(2)如图所示,E是ABC的两外角平分线的交点,(3)如图所示,E是ABC内角与外角的平分线的交点,(4)如图所示,O是ABC的内切圆,D、E、F分别为切点,则DOE180A(5)如图所示,O是ABC的内切圆,D、E、F为切点,(6)如图所示,O是ABC的内切圆,D、E、F为切点,P为上一点,则【典型例题】类型一、圆的性质及垂径定理的应用1已知:如图所示,O中,半径OA4,弦BC经过半径OA的中点

9、P,OPC60,求弦BC的长 【思路点拨】要用好60角,构造直角三角形在圆中常用的是作出弦的弦心距,由弦心距,半弦长及半径构成直角三角形【答案与解析】解:过O作OMBC于M,连接OC在RtOPM中,OPC60,OP,PM1,OM在RtOMC中,BC2MC 【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题2如图所示,在O中,弦AB与CD相交于点M,连接AC (1)求证:MAC是等腰三角形;(2)若AC为O直径,求证:AC22AMAB 【思路点拨】 (1)证明MCAMAC;(2)证明AOMABC【答

10、案与解析】证明:(1) ,MCAMACMAC是等腰三角形(2)连接OMAC为O直径,ABC90 MAC是等腰三角形,OAOC,MOACAOMABC90MAOCAB,AOMABC,AOACAMAB,AC22AMAB【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中举一反三:【变式】如图所示,在O中,AB2CD,则( ) A BC D与的大小关系无法确定 【答案】 解:要比较与的大小有两种思路 (1)把的一半作出来,比较与的大小; (2)把作出来,比较与的大小 如图所示,作OEAB,垂足为E,交于

11、F则,且AB2CDAECD在RtAFE中,AFAECD AFCD,即答案A. 【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题2】3已知:如图所示,ABC内接于O,BD半径AO于D(1)求证:CABD;(2)若BD4.8,sinC,求O的半径 【思路点拨】过O作OEAB于E,连接BO,再由垂径定理及三角函数进行证明与求解.【答案与解析】 解法一:(1)过O作OEAB于E,连接BO(如图所示),则又 BDAO,ABD+BAD90AOE+BAD90,ABDAOEC(2)在RtABD中,设AD4k,则AB5k,BD3k4.8,k1.6AB8,AE4,OA5解法二:(1

12、)延长AO交O于C(如图所示)CCAC为O的直径,ABC90C+BAD90BAD+ABD90,ABDCC(2)在RtBDC中,在RtABC中,设AB4k,则AC5k,BC3k6k2【总结升华】 解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心类型二、圆的切线判定与性质的应用4已知:如图所示,AB是O的直径,BAC30,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且ECFE (1)求证:CF是O的切线;(2)设O的半径为1,且ACCE,求MO的长 【思路点拨】连接OC,证OCCF

13、是证切线的常用方法【答案与解析】(1)证明 连接OCAB是O的直径,ACB90BAC30,ABC60在RtEMB中,E+MBE90,E30EECF,ECF30ECF+OCB90又ECF+OCB+OCF180,OCF90CF为O的切线 (2)解 在RtACB中,A30,ACB90,ACABcos30,BCABsin3021 ACCE,BEBC+CE1+在RtBEM中,E30,BME90,MBBEsin30 MOMBOB【总结升华】有关切线的判定,主要有两种类型,若题目已经给出了直线与圆有公共点,可采用“连半径证垂直”的方法(此题就如此);若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂

14、线,证垂线段等于半径”的方法,简称“作垂直证半径”举一反三:【变式】如图所示,ABC中,ABC,BCa,CAb,面积为SO是ABC的内切圆,求内切圆半径r【答案】 解:连接OD、OE、OF、OA、OB、OC, 则ODAB,OEAC,OFBC, 类型三、切线的性质与等腰三角形、勾股定理综合运用5如图所示,O是RtABC的外接圆,AB为直径,ABC30,CD是O的切线,EDAB于F (1)判断DCE的形状;(2)设O的半径为1,且,求证DCEOCB【思路点拨】(1)由于AB是直径,那么ACB=90,而ABC=30,易求BAC=60,结合OA=OC,易证AOC是正三角形,于是OCD=60,结合CD是

15、切线,易求DCE=30,在RtAEF中,易求E=30,于是DCE=E,可证CDE为等腰三角形; (2)在RtABC中,由于A=60,AB=2,易求AC=AO=1,利用勾股定理可求BC=,CE=AE-AC=,那么BC=CE,而OBC=OCB=DCE=DEC=30,从而可证OBCDCE【答案与解析】解:(1)ABC30,BAC60又OAOC,AOC是正三角形 CD是切线,OCD90 DCE180-609030DCEDEC而EDAB于F,CED90BAC30故CDE为等腰三角形(2)证明:在ABC中,AB2,ACAO1,BC, 又AEF30,AE2AF CEAEACBC 而OCBACBACO30AB

16、C, 故CDECOB【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质解题的关键是证明AOC是正三角形举一反三:【变式】如图所示,PQ3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB_【答案】解:连接PQ并延长交AB于E,设大圆的圆心为O,连接OA设AB2x,则AEx,OB2x-2在RtOAE中,OA5, OA2OE2+AE2,即52(2x-2)2+x2,x3AB6答案:6 6如图所示,O的直径AB4,点P是AB延长线上的一点,PC切O于点C,连接ACPM

17、平分APC交AC于M (1)若CPA30,求CP的长及CMP的度数; (2)若点P在AB的延长线上运动,你认为CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出CMP的度数; (3)若点P在直径BA的延长线上,PC切O于点C,那么CMP的大小是否变化?请直接写出你的结论【思路点拨】(1)作辅助线,连接OC,根据切线的性质知:OCPC,由CPO的值和OC的长,可将PC的长求出;(2)通过角之间的转化,可知:CMP=(COP+CPO),故CMP的值不发生变化【答案与解析】解:(1)连接OC,则OCP90 OAOC, COP2CAP60 CPOCtan60ABtan60, CP PM平分C

18、PA, CMP30+15=45.(2)设CPA, PM平分CPA, MPACPA OCP90, COP90- 又 OAOC, CAP CMPCAP+MPA(3)CMP的大小没有变化CMP=A+MPA=COP+CPO=(COP+CPO)=90=45【总结升华】 解第(2)小题时,引用“设CPA”这一方法,用代数方法计算得出结论,降低了解题的难度本题主要考查切线的性质及对直角三角形性质的运用举一反三:【变式】如图所示,AB是O的直径,C是的中点,CDAB于D,CD与AE相交于F (1)求证:AC2AFAE;(2)求证:AFCF【答案】 证明:(1)如图所示,连接CE,延长CD交O于G,连接AGAB

19、是O直径,CDAB,23又11,AFCACE AC2AFAE (2)由(1)得又C是的中点,21AFCF中考总复习:圆的有关概念、性质与圆有关的位置关系巩固练习(提高)【巩固练习】一、选择题1. 已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 ( )A.相交B.外切 C.外离D.内含2如图,AB为 O 的直径,CD 为弦,ABCD ,如果BOC=70,那么A的度数为 ( )A. 70 B.35 C. 30 D. 203已知AB是O的直径,点P是AB延长线上的一个动点,过P作O的切线,切点为C,APC的平分线交AC于点D,则CDP等于 ( )A.30B.60 C.45

20、D.50 第2题 第3题 第4题 第5题4如图,O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为( ) A. 5 B. 4 C. 3 D. 25如图所示,四边形ABCD中,DCAB,BC=1,AB=AC=AD=2则BD的长为 ( )A. B. C. D. 6. 如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A B CD二、填空题7已知O的半径为1,圆心O到直线的距离为2,过上任一点A作O的切线,切点为B,则线段AB长度的最小值为 . 8如图,AD,AC分别是O的直径和弦且CA

21、D=30OBAD,交AC于点B若OB=5,则BC的长等于 .9如图所示,已知O中,直径MN10,正方形ABCD的四个顶点分别在半径OM、OP以及O上,并且POM45,则AB的长为_ 第8题 第9题 第10 题10如图所示,在边长为3 cm的正方形中,与相外切,且分别与边相切,分别与边相切,则圆心距= cm11如图所示,是的两条切线,是切点,是上两点,如果E=46,DCF=32那么A的度数是 .12在圆的内接等腰三角形ABC(三角形ABC三个顶点均在圆周上)中,圆心到底边BC的距离为3cm,圆的半径为7cm,则腰AB的长为 .三、解答题13如图所示,AC为O的直径且PAAC,BC是O的一条弦,直

22、线PB交直线AC于点D,(1)求证:直线PB是O的切线;(2)求cosBCA的值 14如图所示,点A、B在直线MN上,AB11厘米,A、B的半径均为1厘米A以每秒2厘米的速度自左向右运动,与此同时,B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r1+t(t0) (1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式; (2)问点A出发后多少秒两圆相切? 15. 如图所示,半径为2.5的O中,直径AB的不同侧有定点C和动点P已知BC:CA4:3,点P在上运动,过点C作CP的垂线,与PB的延长线交于点Q (1)当点P运动到与点C关于AB对称时,求CQ的长; (2)

23、当点P运动到的中点时,求CQ的长;(3)当点P运动到什么位置时,CQ取到最大值,并求此时CQ的长 16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设MOP=当= 度时,点P到CD的距离最小,最小值为 探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角BMO= 度,此时点N到CD的距离是 探究二将如图1中的扇形纸片NOP按下面对的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时

24、针旋转(1)如图3,当=60时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定的取值范围(参考数椐:sin49=,cos41=,tan37=) 【答案与解析】一、选择题1.【答案】B;【解析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).两圆的直径分别是2厘米与4厘米,两圆的半径分别是1厘米与2厘米.圆心距是1+2

25、=3厘米,这两个圆的位置关系是外切.故选B.2.【答案】B;【解析】如图,连接OD,AC.由BOC = 70,根据弦径定理,得DOC = 140;根据同弧所对圆周角是圆心角一半的性质,得DAC = 70.从而再根据弦径定理,得A的度数为35.故选B.3.【答案】C;【解析】连接OC,OC=OA,PD平分APC,CPD=DPA,CAP=ACO.PC为O的切线,OCPC.CPD+DPA+CAP +ACO=90,DPA+CAP =45,即CDP=45. 故选C.4.【答案】C;【解析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM长的最小值为点O到弦AB的垂直线段.如图,过点O作OMA

26、B于M,连接OA.根据弦径定理,得AMBM4,在RtAOM中,由AM4, OA5,根据勾股定理得OM3,即线段OM长的最小值为3.故选C. 5.【答案】B;【解析】以A为圆心,AB长为半径作圆,延长BA交A于F,连接DF. 根据直径所对圆周角是直角的性质,得FDB=90; 根据圆的轴对称性和DCAB,得四边形FBCD是等腰梯形. DF=CB=1,BF=2+2=4.BD=.故选B.6.【答案】D;【解析】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,二、填空题7【答案】;【解析】如图所示,OA,AB是切线,连接OB,OA,OA=2,又AB

27、是切线,OBAB,在RtAOB中,AB= 8【答案】5;【解析】在RtABO中, AD=2AO=. 连接CD,则ACD=90. 在RtADC中, BC=ACAB=1510=5.9【答案】;【解析】设正方形ABCD边长为x, POM45, OCCDx, OB2x,连接OA,在RtOAB中, 10【答案】;【解析】本题是一个综合性较强的题目,既有两圆相切,又有直线和圆相切求的长就要以为一边构造直角三角形过作的平行线,过作的平行线,两线相交于是和的半径之和,设为,则在中解得由题意知不合题意,舍去故填.11【答案】99; 【解析】由,知从而在中,与互补,所以故填99.12【答案】2 cm,或2 cm;

28、 【解析】当圆心O在ABC内时,由题意可知|OD|3,|OC|7|DC|在RtADC中,AC2AD2DC210240140,AC当圆心O在ABC外时,OD3,OC7,DCAO7,AD4在RtADC中,AC2AD2DC2164056AC故ABC的腰AB长为2 cm,或2 cm. 三、解答题13.【答案与解析】 (1)证明:连接OB、OP 且D=D, BDCPDO.DBC=DPO.BCOP.BCO=POA ,CBO=BOP.OB=OC,OCB=CBO.BOP=POA.又OB=OA, OP=OP, BOPAOP(SAS).PBO=PAO.又PAAC, PBO=90. 直线PB是O的切线 .(2)由(

29、1)知BCO=POA.设PB,则BD=,又PA=PB,AD=.又 BCOP ,. . cosBCA=cosPOA=. 14.【答案与解析】 (1)当0t5.5时,函数表达式为d11-2t; 当t5.5时,函数表达式为d2t-11(2)两圆相切可分为如下四种情况:当两圆第一次外切,由题意,可得11-2t1+1+t,t3;当两圆第一次内切,由题意,可得11-2t1+t-1,;当两圆第二次内切,由题意,可得2t-111+t-1,t11;当两圆第二次外切,由题意,可得2t-111+t+1,t13所以,点A出发后3秒、秒、11秒、13秒两圆相切15.【答案与解析】 解:(1)当点P运动到与点C关于AB对

30、称时,如图所示,此时CPAB于D又 AB为O的直径, ACB90 AB5,BC:CA4:3 BC4,AC3又 ACBCABCD, ,在RtPCQ中,PCQ90,CPQCAB, CQPCtanCPQPC (2)当点P运动到的中点时,如图所示,过点B作BEPC于点E P是弧AB的中点,PCB45, CEBE又CPBCAB, tanCPBtanCAB,即,从而由(1)得,(3) 点P在上运动中,在RtPCQ中, PC最大时,CQ取到最大值 当PC过圆心O,即PC取最大值5时,CQ最大,最大值为16.【答案与解析】解:思考:90,2.探究一:30,2.探究二:(1)当PMAB时,点P到AB的最大距离是MP=OM=4,从而点P到CD的最小距离为64=2.当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,此时旋转角最大,BMO的最大值为90.(2)如图4,由探究一可知,点P是弧MP与CD的切线时,大到最大,即OPCD,此时延长PO交AB于点H,最大值为OMH+OHM=30+90=120,如图5,当点P在CD上且与AB距离最小时,MPCD,达到最小,连接MP,作HOMP于点H,由垂径定理,得出MH=3.在RtMOH中,MO=4,sinMOH=.MOH=49.=2MOH,最小为98.的取值范围为:98120. 的取值范围是.