ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:205.48KB ,
资源ID:87684      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-87684.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年中考总复习:分式与二次根式学案含解析)为本站会员(牛***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020年中考总复习:分式与二次根式学案含解析

1、2020年中考总复习:分式与二次根式学案【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算【知识网络】【考点梳理】考点一、分式的有关概念及性质1分式设A、B表示两个整式如果B中含有字母,式子就叫做分式注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3最简分式分子与分母没有公因式的分式叫做最简分式如果分子分母有公因式,

2、要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断(4)分式有无意义的条件:在分式中, 当B0时,分式有意义;当分式有意义时,B0 当B=0时,分式无意义;当分式无意义时,B=0 当B0且A = 0时,分式的值为零考点二、分式的运算1基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 = 同分母的分式相

3、加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算 (分式乘方)分式的乘方,把分子分母分别乘方2零指数 .3负整数指数 4分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的5约分 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分6通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分要点诠释: 约分需

4、明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积 (2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉 (3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.考点三、分式方程及其

5、应用1分式方程的概念分母中含有未知数的方程叫做分式方程2分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程 3分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解4分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理

6、性要点诠释: 解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解列分式方程解应用题的基本步骤:(1)审仔细审题,找出等量关系;(2)设合理设未知数;(3)列根据等量关系列出方程;(4)解解出方程;(5)验检验增根;(6)答答题考点四、二次根式的主要性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则.要点诠释: 与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的

7、平方的算术平方根;在中,而中a可以是正实数,0,负实数但与都是非负数,即,因而它的运算的结果是有差别的,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而.考点五、二次根式的运算1二次根式的乘除运算(1)运算结果应满足以下两个要求:应为最简二次根式或有理式;分母中不含根号.(2)注意知道每一步运算的算理;2二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,

8、整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.

9、例如,没有必要先对进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,通过约分达到化简目的;(2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.【典型例题】类型一、分式的意义1使代数式有意义的的取值范围是( )A. B. C.且 D.一切实数【答案】C;【解析】解不等式组得且,故选C【点评】代数式有意义,就是要使代数式中的分式的分母不为零;代数式中的二次根式的被开方数是非负数,即需要中的x0;分母中的2x-10.举一反三:【变式】当x取何值时,分式有意义?值为零?【答案】当时,分式有意义,即时

10、,分式有意义.当且时,分式值为零,解得,且,即时,分式值为零.类型二、分式的性质2已知,求下列各式的值.(1); (2).【答案与解析】(1)因为,所以.即.所以.(2),所以.【点评】观察(1)和已知条件可知,将已知等式两边分别平方再整理,即可求出(1)的值;对于(2),直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求出(2)的值.举一反三:【变式】已知求的值.【答案】 由得所以即.所以.类型三、分式的运算3计算【答案与解析】【点评】异分母分式相加减,先根据分式的基本性质进行通分,转化为同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分子、分母都乘以分

11、母与最简公分母所差的因式.运算的结果应根据分式的基本性质化为最简形式.举一反三:【变式】已知,化简求值:【答案】原式类型四、分式方程及应用4如果方程 有增根, 那么增根是 .【答案与解析】 因为增根是使分式的分母为零的根,由分母或可得.所以增根是.答案: 【点评】使分母为0的根是增根.5为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程现在甲、乙两个工程队有能力承包这个工程经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的

12、工程费用2500元,乙队每天的工程费用2000元(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用【答案与解析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天 根据题意得: 方程两边同乘以x(x+25),得30(x+25)+30x=x(x+25),即x235x750=0解之,得x1=50,x2=15 经检验,x1=50,x2=15都是原方程的解但x2=15不符合题意,应舍去当x=50时,x+25=75答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天(2)此问题只要设计出符合条件的一种方案即可方

13、案一:由甲工程队单独完成( 所需费用为:250050=125000(元)方案二:由甲乙两队合作完成所需费用为:(2500+2000)30=135000(元)【点评】本题考查分式方程在工程问题中的应用分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键工程问题的基本关系式:工作总量=工作效率工作时间(1)如果设甲工程队单独完成该工程需x天,那么由“乙队单独完成此项工程的时间比甲队单独完成多用25天”,得出乙工程队单独完成该工程需(x+25)天再根据“甲、乙两队合作完成工程需要30天”,可知等量关系为:甲工程队30天完成该工程的工作量+乙工程队30天完成该工程的工作量=1(2)首先根据(1

14、)中的结果,排除在60天内不能单独完成该工程的乙工程队,从而可知符合要求的施工方案有两种:方案一:由甲工程队单独完成;方案二:由甲乙两队合作完成针对每一种情况,分别计算出所需的工程费用举一反三:【变式】莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售经市场调查,批发每天售出6吨(1)受天气、场地等各种因素的影响,需要提前完成销售任务在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润

15、【答案】(1)设原计划零售平均每天售出x吨根据题意,得,解得x1=2,x2=16经检验,x=2是原方程的根,x=16不符合题意,舍去答:原计划零售平均每天售出2吨(2)实际获得的总利润是:2000620+2200420=416000(元)类型五、二次根式的定义及性质6当x取何值时,的值最小?最小值是多少?【答案与解析】 ,当9x+1=0,即时,有最小值,最小值为3.【点评】解决此类问题一定要熟练掌握二次根式的非负性,即0(a0).由二次根式的非负性可知的最小值为0,因为3是常数,所以的最小值为3.类型六、二次根式的运算7计算:; 【答案与解析】原式【点评】本题主要考查的是二次根式的混合运算,在

16、进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算 中考总复习:分式与二次根式巩固练习(基础)【巩固练习】一、选择题1. 下列各式与相等的是( )A B. C. D. 2计算 的结果为( ) A. B. C. 1 D.1a3若分式的值是0,则x为( )A0 B.1 C.-1 D.14下列计算正确的是 ( )5在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x个鸡蛋,根据题意下列方程

17、正确的是()A10 B10C10 D106函数中自变量x的取值范围是( )A. x2B. x=3 C. x2且x3 D. x2且x3二、填空题7若分式的值为0,则x的值等于 8化简的结果是_.9.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是_千米/时.10在中,是最简二次根式的有 个.11. 若最简二次根式是同类二次根式,则x的值为 .12(1)把化简的结果是 .(2)估计的运算结果应在 之间.(填整数)三、解答题13化简:(1); (2) .14.(1)已知:,求的值. (2)已知:,求的值.15在“情系海啸”捐款活动中,某同学

18、对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的.信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.16.已知.【答案与解析】一、选择题1.【答案】C;【解析】化简= . 2.【答案】C;【解析】=1,故选C3.【答案】B;【解析】分式的值为0,则解得. 4.【答案】A;【解析】根据具体选项,应先进行化简,再计算. A选项中,B选若可化为,C选项逆用平方差公式可求得,而D选项应将分子、分母都乘,得.故选A. 5.【答案】B;【解析】设每个甲型包装箱可装x个鸡

19、蛋,10故选B6.【答案】A;【解析】2-x0,x2,3不在x2的范围内. 二、填空题7【答案】8;【解析】根据分式的值为零的条件:分子=0,分母0,可以求出x的值即x8=0,x=8,故答案为:88【答案】;【解析】找到最简公分母为(m+3)(m-3),再通分. 9【答案】4.8; 【解析】平均速度=总路程总时间,设从学校到家的路程为s,则.10【答案】3;【解析】是最简二次根式. 11【答案】-1; 【解析】根据题意得x+3=3x+5,解得x=-1.12【答案】(1) ; (2)3和4; 【解析】(1) (2) 三、解答题13.【答案与解析】(1)原式 (2)原式 .14.【答案与解析】 (1) 2=+1原式=1(2) .15.【答案与解析】 设甲班平均每人捐款x元,则乙班平均每人捐款x元.根据题意, 得,解这个方程得.经检验,是原方程解. 答:甲班平均每人捐款5元.16.【答案与解析】 由二次根式的定义及分式性质,得