ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.22MB ,
资源ID:73291      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-73291.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四年级高思奥数之数列与数表含答案)为本站会员(姗***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

四年级高思奥数之数列与数表含答案

1、第 17 讲 数列与数表内容概述通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题,注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.典型问题兴趣篇11,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,100请观察上面数列的规律,问:(1)这个数列一共有多少项? (2)这个数列所有数的总和是多少?2观察数组(1,2,3),(3 ,4,5) ,(5,6,7),(7 ,8,9)的规律,求:(1)第 20 组中三个数的和;(2)前 20 组中所有数的和3一个数列的第一项是 l,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的

2、两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍请问:(1)第 100 项是多少?(2)前 100 项的和是多少?4. 如图 17-1,方格表中的数是按照一定规律填人的请观察方格表,并填出“? ”处的数5如图 17-2,数阵中的数是按一定规律排列的,请问:(1)100 在第几行、第几列?(2)第 20 行第 3 列的数是多少?6如图 17-3,从 4 开始的自然数是按某种规律排列的,请问:(1)100 在第几行,第几列?(2)第 5 行第 20 列的数是多少?7. 如图 17-4 所示,把偶数 2、4、6、8,排成 5 列各列从左到右依次为第 1 列、第 2 列、第 3 列、第

3、4 列和第 5 列,请问:(1)100 在第几行,第几列?(2)第 20 行第 2 列的数是多少?8如图 17-5,从 1 开始的自然数按某种方式排列起来,请问:(1)100 在第几行?100 是这一行左起第几个数?(2)第 25 行左起第 5 个数是多少?9. 如图 17-6,把从 1 开始的自然数排成数阵试问:能否在数阵中放人一个 33 的方框,使得它围住的九个数之和等于:(1)1997;(2)2016;(3)2349 如果可以,请写出方框中最大的数10. 如图 17-7,将 1 至 400 这 400 个自然数顺次填人 20 x20 的方格表中,请问:(1)246 在第几行,第几列?(2

4、)第 14 行第 13 列的数是多少?(3)所有阴影方格中数的总和是多少?拓展篇11,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,l,84,0请观察上面数列的规律,请问:(1)这个数列中有多少项是 2?(2)这个数列所有项的总和是多少?2一列由两个数组成的数组: (1,1) , (1,2) , (2,2), (1,3), (2,3),(3,3) ,(1,4),(2 ,4),(3,4),(4 ,4),(1 ,5),请问:(1)第 100 组内的两数之和是多少?(2)前 55 组中“5”这个数出现了多少次?3有一列数,第一个数是 3,第二个数是 4,从第三个数开始

5、,每个数都是它前面两个数的和的个位数从这列数中取出连续的 50 个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的 500 个数,500 个数的和最大又是多少?4如图 17-8,把从 1 开始的自然数填在图上, 1 在射线 OA 上,2 在射线 OB 上,3 在射线 OC 上,4 在射线 OD 上,5 在射线 OE 上,6 在射线 OF 上,7 在射线 OG 上,8 在射线OH 上,9 又回到射线 OA 上,如此循环下去,问:78 在哪条射线上?射线 OE 上的第 30 个数是多少?5如图 17-9,将从 5 开始的连续自然数按规律填人数阵中,请问:(1)123 应该排在第几列?(2

6、)第 2 行第 20 列的数是多少?6如图 17-10 所示,将自然数有规律地填入方格表中,请问:(1)500 在第几行,第几列?(2)第 100 行第 2 列是多少?7如图 17-11 所示,数阵中的数字是按一定规律排列的这个数阵中第 60 行左起第 4 个数字是多少?8中国古代的纪年方法叫“干支纪年” ,是在“十天干”和“十二地支”的基础上建立起来的天干共十个,其排列顺序为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支共十二个,其排列顺序为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥以一个天干和一个地支相配,天干在前,地支在后,每对干支表示一年在干支纪年中,每六十年纪年方式循环一次公元

7、纪年则是国际通行的纪年方式图 17-12 是 1911 年到 1926 年的公元纪年与干支纪年的对照表请问:(1)中国近代史上的“辛亥革命”发生在公元 1911 年,是干支纪年的辛亥年,请问公元 2049 年是干支纪年的什么年?(2)21 世纪的甲子年是公元纪年的哪一年?(3)“戊戌变法”发生在 19 世纪末的戊戌年,这一年是公元纪年的哪一年 ?9如图 17-13 所示,将 1 至 400 这 400 个自然数填入下面的小三角形中,每个小三角形内填有一个数. “l”所处的位置为第 1 行;“2,3,4”所处的位置为第 2 行;请问:(1)第 15 行正中间的数是多少?(2)第 12 行中所有空

8、白三角形内的数之和是多少?(3)前 8 行中阴影三角形内的各数之和比空白三角形内的各数之和大多少?10如图 17-14,把从 1 开始的自然数按某种方式排列起来请问:(1)150 在第几行,第几列?(2)第 5 行第 10 列的数是多少?11如图 17-15,把从 l 开始的自然数按某种方式排列起来请问:(1)200 排在第几行,第几列?(2)第 18 行第 22 列的数是多少?12如图 17-16 所示,把自然数按规律排列起来如果用“土”字型阴影覆盖出 8 个数并求和,且和为 798这 8 个数中最大的数是多少?(“土” 字不能旋转或翻转)超越篇1下面的数组是按一定顺序排列的:(1,1),(

9、1 ,2),(2,1),(1 ,3),(2 ,2),(3,1) ,(1,4),(2 ,3),请问:(1)其中第 70 个括号内的数分别是多少?(2)前 50 个括号内各数之和是多少?2. 桌子上有一堆球,如果球的总数量是 10 的倍数,就平均分成 10 堆并拿走其中 9 堆;如果球的总数量不是 10 的倍数,就添加不多于 9 个球,使球数变为 10 的倍数,再平均分成10 堆并拿走其中 9 堆这个过程称为一次“操作” 若球仅为一个,则不做“操作” 如果最初有 19491948194754321 个球,那么经过多少次“操作”后仅余下一个球?3在图 17-17 所示的数阵中,将满足下面条件的两个数

10、分为一组:它们上下相邻,且和为391问:在所有这样的数组中,哪一组内的两个数乘积最小?4图 17-18 中的数是按一定规律排列的,郡么第 6 行第 23 列的数字是多少?5将“白、旦、田、由、甲、申”这六个字按如图 17-19 所示的方式排列请问:(1)第 1 行从左往右数的第 15 个字是多少?(2)第 1 列从上往下数的第 25 个字是多少?(3)第 25 行的第 15 个字是多少?6将自然数从 1 开始,顺次排成如图 17-20 所示的螺旋形,其中 2,3,5,7,处为拐点,请问:(1)第 30 个拐点处的数是多少?(2)前 30 个拐点处的各数之和是多少?7如图 17-2l,把从 1

11、开始连续的自然数按照一定的顺序排成数表,如果这个数表有 40 行,请通过计算回答下列问题:(1)第 1 行的数是多少?(2)第 20 行中的最大数与最小数之和是多少?(3)第 35 行中的最大数与最小数之和是多少?8. 如图 17-22,25 个同样大小的等边三角形拼成了一个大等边三角形在每个小三角形的顶点处都标有一个数,使得任何两个相邻小等边三角形所构成的菱形的两组相对的顶点上所放置的数的和都相等已知在大等边三角形的三个顶点放置的数分别是100、200、300求所有顶点上数的总和第 17 讲 数列与数表内容概述通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题,注意数表形式的多样

12、性,计算时常常考虑周期性,或进行合理估算.典型问题兴趣篇11,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,100请观察上面数列的规律,问:(1)这个数列一共有多少项? (2)这个数列所有数的总和是多少?答案:67;1783解析:间隔是是等差数列。2观察数组(1,2,3),(3 ,4,5) ,(5,6,7),(7 ,8,9)的规律,求:(1)第 20 组中三个数的和;(2)前 20 组中所有数的和答案:120;1260解析:(39,40,42) ,运用等差数列求和公式。3一个数列的第一项是 l,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一

13、项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍请问:(1)第 100 项是多少?(2)前 100 项的和是多少?答案:8;975解析:按规律写:1,2,4,8,16,12,4,8,16,12四个数为一个周期4. 如图 17-1,方格表中的数是按照一定规律填人的请观察方格表,并填出“? ”处的数答案:105解析:四周数的差是一个等差数列。5如图 17-2,数阵中的数是按一定规律排列的,请问:(1)100 在第几行、第几列?(2)第 20 行第 3 列的数是多少?答案:(1)第 25 行第 6 列;(2)79解析:两行为一个周期。观察除以 8 的余数与在第几列之间的关系。6如图

14、 17-3,从 4 开始的自然数是按某种规律排列的,请问:(1)100 在第几行,第几列?(2)第 5 行第 20 列的数是多少?答案:(1)第 1 第 25 列;(2)81解析:两列为一个周期。7. 如图 17-4 所示,把偶数 2、4、6、8,排成 5 列各列从左到右依次为第 1 列、第 2 列、第 3 列、第 4 列和第 5 列,请问:(1)100 在第几行,第几列?(2)第 20 行第 2 列的数是多少?答案:(1)第 15 行第 2 列;(2)138解析:八个数为一个周期,可以把每个数先除以 2 转化成简单数列。8如图 17-5,从 1 开始的自然数按某种方式排列起来,请问:(1)1

15、00 在第几行?100 是这一行左起第几个数?(2)第 25 行左起第 5 个数是多少?答案:(1)第 14 行左起第 9 个数;(2)321解析:观察 1,6,15这样的数都是 1 加到行数之和。3,10 也是 1 一直加到行数之和。9. 如图 17-6,把从 1 开始的自然数排成数阵试问:能否在数阵中放人一个 33 的方框,使得它围住的九个数之和等于:(1)1997;(2)2016;(3)2349 如果可以,请写出方框中最大的数答案:只有 2349 是可以的,最大为 269.解析:和一定是 9 的倍数,而且中心数必须是第二列到第 6 列的数。10. 如图 17-7,将 1 至 400 这

16、400 个自然数顺次填人 20 x20 的方格表中,请问:(1)246 在第几行,第几列?(2)第 14 行第 13 列的数是多少?(3)所有阴影方格中数的总和是多少?答案:(1)13 行 16 列;(2)273;(8020)解析:周期问题拓展篇11,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,l,84,0请观察上面数列的规律,请问:(1)这个数列中有多少项是 2?(2)这个数列所有项的总和是多少?答案:(1)26 项;(2)2652解析:间隔数是等差数列。2一列由两个数组成的数组: (1,1) , (1,2) , (2,2), (1,3), (2,3),(3

17、,3) ,(1,4),(2 ,4),(3,4),(4 ,4),(1 ,5),请问:(1)第 100 组内的两数之和是多少?(2)前 55 组中“5”这个数出现了多少次?答案:23;11 次。解析:数对前面的数规律为 1,1,2,1,2,3,1,2,3,4,后面的规律为:1,2,2,3,3,3,4,4,4,4,3有一列数,第一个数是 3,第二个数是 4,从第三个数开始,每个数都是它前面两个数的和的个位数从这列数中取出连续的 50 个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的 500 个数,500 个数的和最大又是多少?答案:257;2510解析:3,4,7,1,8,9,7,6,3

18、,9,2,1,3,4,7,1,8,9,7,6,3,9,2,112 个个数为一个周期。50 个数是 4个周期加上 9,8 最大。500 个数求最大是 41 个周期加上 8 个最大的数,不加 1,2,3,4 即可。4如图 17-8,把从 1 开始的自然数填在图上, 1 在射线 OA 上,2 在射线 OB 上,3 在射线 OC 上,4 在射线 OD 上,5 在射线 OE 上,6 在射线 OF 上,7 在射线 OG 上,8 在射线OH 上,9 又回到射线 OA 上,如此循环下去,问:78 在哪条射线上?射线 OE 上的第 30 个数是多少?答案:射线 OF 上;237.解析:八个数为一个周期,每条线上

19、的数又组成一个等差数列。5如图 17-9,将从 5 开始的连续自然数按规律填人数阵中,请问:(1)123 应该排在第几列?(2)第 2 行第 20 列的数是多少?答案:第 24 列;101.解析:周期问题,等差数列。6如图 17-10 所示,将自然数有规律地填入方格表中,请问:(1)500 在第几行,第几列?(2)第 100 行第 2 列是多少?答案:第 111 行,第 5 列;448.解析:周期问题。7如图 17-11 所示,数阵中的数字是按一定规律排列的这个数阵中第 60 行左起第 4 个数字是多少?答案:9解析:第 60 行左起第 4 个数字是第 476 个数字。1-9 9 个10-99

20、 180 个100-194 285 个9+180+285=474 个 所以第 60 行左起第 4 个数字是 98中国古代的纪年方法叫“干支纪年” ,是在“十天干”和“十二地支”的基础上建立起来的天干共十个,其排列顺序为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支共十二个,其排列顺序为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥以一个天干和一个地支相配,天干在前,地支在后,每对干支表示一年在干支纪年中,每六十年纪年方式循环一次公元纪年则是国际通行的纪年方式图 17-12 是 1911 年到 1926 年的公元纪年与干支纪年的对照表请问:(1)中国近代史上的“辛亥革命”发生在公元 1911

21、年,是干支纪年的辛亥年,请问公元 2049 年是干支纪年的什么年?(2)21 世纪的甲子年是公元纪年的哪一年?(3)“戊戌变法”发生在 19 世纪末的戊戌年,这一年是公元纪年的哪一年 ?答案:己巳年;2044 年;1889 年解析:(1) 【10,12】=602049-1911=13813860=218 己巳年(2)1924+602=2044(3)余数特征9如图 17-13 所示,将 1 至 400 这 400 个自然数填入下面的小三角形中,每个小三角形内填有一个数. “l”所处的位置为第 1 行;“2,3,4”所处的位置为第 2 行;请问:(1)第 15 行正中间的数是多少?(2)第 12

22、行中所有空白三角形内的数之和是多少?(3)前 8 行中阴影三角形内的各数之和比空白三角形内的各数之和大多少?答案:211;1463;176解析:(1)规律为 N(N-1)带入(2)123+125+127+143=1463(3)1+(4-1)+(9-2)+(16-3) +(25-4)+(36-5)+(49-6)+(64-7)=17610如图 17-14,把从 1 开始的自然数按某种方式排列起来请问:(1)150 在第几行,第几列?(2)第 5 行第 10 列的数是多少?答案:第 6 行第 13 列;86解析:(1)最右侧数是行数的平方(2)第 9 行最左侧数是 81,所以 81+5=8611如图

23、 17-15,把从 l 开始的自然数按某种方式排列起来请问:(1)200 排在第几行,第几列?(2)第 18 行第 22 列的数是多少?答案:第 10 行第 11 列;759。解析:(1)1+2+3+19=190200-190=10 行;21-10=11 列(2)18+22-1=39;第 39 行第一个数是 780,780-21=75912如图 17-16 所示,把自然数按规律排列起来如果用“土”字型阴影覆盖出 8 个数并求和,且和为 798这 8 个数中最大的数是多少?(“土” 字不能旋转或翻转)答案:112解析:设方程的方法,设方格中任意一个数为 X,用含有 X 的式子表示其他的方格内数,

24、他们的和为 798,解方程再带入最大求值。超越篇1下面的数组是按一定顺序排列的:(1,1),(1 ,2),(2,1),(1 ,3),(2 ,2),(3,1) ,(1,4),(2 ,3),请问:(1)其中第 70 个括号内的数分别是多少?(2)前 50 个括号内各数之和是多少?答案:解:(1)把(1,1)看作第一组;(1,2),(2,1)看作第二组;依次类推每一个括号内的两个数字之和是它所在组的序号加 1.前十一组共有 66 括号,所以第 70个括号一定属于第十二组。(2)第一组的和为 12;第二组的和为 22;以此类推前 50 个括号内的各数之和为 122334910511385.2. 桌子上

25、有一堆球,如果球的总数量是 10 的倍数,就平均分成 10 堆并拿走其中 9 堆;如果球的总数量不是 10 的倍数,就添加不多于 9 个球,使球数变为 10 的倍数,再平均分成10 堆并拿走其中 9 堆这个过程称为一次“操作” 若球仅为一个,则不做“操作” 如果最初有 19491948194754321 个球,那么经过多少次“操作”后仅余下一个球?解:每操作一次,数位会减少 1,当数位减少至一位时是“2”,还可以再进行一次操作,所以,最初的球数有多少数位就可以进行多少次操作。192(99101)3(9991001)4(194910001)6689(次)。3在图 17-17 所示的数阵中,将满足

26、下面条件的两个数分为一组:它们上下相邻,且和为391问:在所有这样的数组中,哪一组内的两个数乘积最小?解:两个数的和一定时,它们的差越大,乘积越小。由数阵中规律可知,上下相邻的两个数差最大为 29.由和差问题公式,较大数(和+差)2=(391+29)2=210,较小数=391210=181,所以,这一组的两个数为 181 和 210.4图 17-18 中的数是按一定规律排列的,郡么第 6 行第 23 列的数字是多少?解:前 22 列的数字个数为 1+2+22=253,从 1 至 120 的数字个数为9+290+321=252,所以,第 23 列的第 1 行是 121 中的“2”,那么第 6 行

27、就是 123 中的“1”。所以,第 6 行第 23 列的数字是“1”。5将“白、旦、田、由、甲、申”这六个字按如图 17-19 所示的方式排列请问:(1)第 1 行从左往右数的第 15 个字是多少?(2)第 1 列从上往下数的第 25 个字是多少?(3)第 25 行的第 15 个字是多少?解:(1)1+2+15=120,第 1 行从左向右的第 15 个字是整个图中第 120 个字,文字排列周期为 6,1206=20。所以第 120 个字是“申”。(2)1+2+24+1=301,第 1 列从上往下数的第 25 个字是整个图中第 301 个字,3016=501,所以第 301 个字是“白”。(3)

28、第 25 行的第 15 个字和第 39 行的第 1 个字都属于第 39 斜行,第 39 行的第 1个字是整个图中第 1+2+38+1=742 个,7426=1234,所以,第 39 行的第1 个字为“由”,再往后数 14 个即为第 25 行的第 15 个字,为“申”。6将自然数从 1 开始,顺次排成如图 17-20 所示的螺旋形,其中 2,3,5,7,处为拐点,请问:(1)第 30 个拐点处的数是多少?(2)前 30 个拐点处的各数之和是多少?解:(1)1+1+1+2+2+3+3+4+4+15+15=241,第 30 个拐点处的数是 241.(2)230+129+(228+227+326+32

29、5+424+423+522+521+152+151)=60+29+552+513+474+435+153=2630前 30 个拐点处的各数之和是 2630.7如图 17-2l,把从 1 开始连续的自然数按照一定的顺序排成数表,如果这个数表有 40 行,请通过计算回答下列问题:(1)第 1 行的数是多少?(2)第 20 行中的最大数与最小数之和是多少?(3)第 35 行中的最大数与最小数之和是多少?解:(1)行数除以 3 余 1 时,整个图形可以看成是 1 和一堆由数字组成的三角形(一个比一个大)组成的。除了 1 以外,有 13 个三角形,最小的是由2,3,4,5,6,7,8,9,10 组成的,

30、总共 9 个数字第 2 个三角形有 18 个数字,一个比一个多 9 个数字,最大的三角形 117 个数字。最大的三角形顶点在第 1 行,底在 40 行。 117 个数字第 2 大的三角形顶点在第 3 行,底在 39 行。 108 个数字第 6 大的三角形顶点在第 11 行,底在 35 行。 72 个数字第 10 大的三角形顶点在第 19 行,底在 31 行。 36 个数字最小的三角形顶点在第 25 行,底在 28 行。 9 个数字容易得出,第 1 行的数是 1+(9+18+27+117)-39=781.(2)第 20 行最小的数字在第 10 大的三角形中。从最小的三角形到第 11 大的三角形,

31、一共 3 个三角形,再加上 1,一共是 1+9+18+27=55 个数字,因为第 10 大的三角形有 36 个数字,所以第 20 行最小的数字是 55+12+12-1=78,最大 800,最大数与最小数之和为 878.(3)每个三角形里的最小数字都是那个三角形的底从左数第 2 个数字,从最小的三角形到第 7 大的三角形,一共 7 个三角形,再加上 1,一共是1+9+18+27+36+45+54+63=253 个数字,所以第 6 大的三角形从 254 开始,也就是第 35 行最小的数字是 254,最大 815,所以,最大数与最小数之和是 1069.8. 如图 17-22,25 个同样大小的等边三

32、角形拼成了一个大等边三角形在每个小三角形的顶点处都标有一个数,使得任何两个相邻小等边三角形所构成的菱形的两组相对的顶点上所放置的数的和都相等已知在大等边三角形的三个顶点放置的数分别是100、200、300求所有顶点上数的总和将 个同样大小的等边三角形,拼成一个大等边三角形。 在每个小三角形的顶点处 2n都标有一个数,使得任何两个相邻小等边三角形所构成的菱形的两组相对的顶点上所放置的数的和都相等。已知在大等边三角形的三个顶点放置的三个数分别是 ,求所有顶点上数的总和。,xyz解 下面先证明:在这样一个网格中,任何一条直线段上的数字,必定排列成等差数列。在上图中,按照定义,必有 和 ,aebd(1

33、)becd(2)将 ,就得到 ,即 排列成等差数列。(1)2c,a对于一条直线段上的一串数字 ,用上面同样的推理方法,可以,ef得到,abcdf也就是说, 排列成等差数列。,def按照上述结论,我们就很容易将各顶点处的数字填写出来。下面计算所有顶点上数字的总和。从 到 的直线段上的 个数字,要成为等差数列,必定是xy1n( ) 。yxk0,n从 到 的直线段上的 个数字,要成为等差数列,必定是z( ) 。zxn,1从 到 的直线段上的 个数字,要成为等差数列,yxknkk必定是( , ) 。xzyj0,1j 0,1n所以,全部数字的总和为。0()nkjyxzyjn()2()6nxyz例 1 设 , , ,则有24,10,3所有顶点上数的总和为 。(1)2()(21)(023)12066nxyz例 2 设 , , ,则有4n,所有顶点上数的总和为 。(1)2()(41)2(03)066nxyz例 3 设 , , ,则有5n,x所有顶点上数的总和为 。(1)2()(51)2(03)42066nxyz