ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:493.72KB ,
资源ID:72412      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-72412.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年苏教版高二数学选修2-1讲义:3.1.1 空间向量及其线性运算(含解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年苏教版高二数学选修2-1讲义:3.1.1 空间向量及其线性运算(含解析)

1、31 空间向量及其运算_31.1 空间向量及其线性运算对 应 学 生 用 书 P48空间向量的概念春节期间,我国南方遭受了寒潮袭击,大风降温天气频发,已知某人某天骑车以 a km/h 的速度向东行驶,感到风是从正北方向吹来问题:某人骑车的速度和风速是空间向量吗?提示:是1空间向量(1)定义:在空间中,既有大小又有方向的量,叫做空间向量(2)表示方法:空间向量用有向线段表示,并且空间任意两个向量都可以用同一平面内的两条有向线段表示2相等向量凡是方向相同且长度相等的有向线段都表示同一向量或者相等向量.空间向量的线性运算问题 1:如何进行平面向量的加法、减法及数乘运算提示:利用平行四边形法则、三角形

2、法则等问题 2:平面向量的加法及数乘向量满足哪些运算律?提示:交换律、结合律、分配律1空间向量的加减运算和数乘运算 OA B ab, A O Bab,Ca( R )2空间向量的加法和数乘运算满足如下运算律(1)交换律:abba;(2)结合律:(a b)ca( bc);(3)分配律:( ab)ab( R).共线向量及共线向量定理空间中有向量 a,b,c( 均为非零向量) 问题 1:向量 a 与 b 共线的条件是什么?提示:存在惟一实数 ,使 a b.问题 2:空间中任意两个向量一定共面吗?任意三个向量呢?提示:一定;不一定1共线向量或平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,那

3、么这些向量叫做共线向量或平行向量向量 a 与 b 平行,记作 ab.规定,零向量与任何向量共线2共线向量定理对空间任意两个向量 a,b(a 0),b 与 a 共线的充要条件是存在实数 ,使 ba.1空间向量的加法满足平行四边形和三角形法则2空间向量的数乘运算是线性运算的一种,结果仍是一个向量,方向取决于 的正负,模为原向量模的| |倍3两向量共线,两向量所在的直线不一定共线,可能平行对 应 学 生 用 书 P49空间向量及有关概念例 1 下列四个命题:(1)所有的单位向量都相等;(2)方向相反的两个向量是相反向量;(3)若 a、b 满足| a|b|,且 a、b 同向,则 ab;(4)零向量没有

4、方向其中不正确的命题的序号为_思路点拨 根据空间向量的概念进行逐一判断,得出结论精解详析 对于(1):单位向量是指长度等于 1 个单位长度的向量,而其方向不一定相同,它不符合相等向量的定义,故(1)错;对于(2):长度相等且方向相反的两个向量是相反向量,故(2) 错;对于(3) :向量是不能比较大小的,故不正确;对于(4):零向量有方向,只是没有确定的方向,故(4)错答案 (1)(2)(3)(4)一点通 1因为空间任何两个向量都可以平移到同一平面上,故空间的两个向量间的关系都可以转化为平面向量来解决2对于有关向量基本概念的考查,可以从概念的特征入手,也可以通过举出反例而排除或否定相关命题。1下

5、列命题中正确的个数是_(1)如果 a,b 是两个单位向量,则|a| b|;(2)两个空间向量相等,则它们的起点相同,终点也相同;(3)同向且等长的有向线段表示同一向量;(4)空间任意两个非零向量都可以平移到同一平面内解析:(1)、(3)、(4) 正确,(2)不正确答案:32给出下列命题:若空间向量 a、b 满足|a| |b|,则 ab;在正方体 ABCDA 1B1C1D1 中,必有 A 1C;若空间向量 m、n、p 满足 mn ,np,则 mp;空间向量的模是一个正实数其中假命题的个数是_解析:假命题根据向量相等的定义,要保证两向量相等,不仅模要相等,而且方向还要相同,但中向量 a 与 b 的

6、方向不一定相同;真命题根据正方体的性质,在正方体 ABCDA 1B1C1D1 中,向量 A与 1C的方向相同,模也相等,应有 AC 1;真命题向量的相等满足传递规律;假命题零向量的模为 0,不是正实数答案:2空间向量的线性运算例 2 化简:( AB CD)( B)思路点拨 根据算式中的字母规律,可转化为加法运算,也可转化为减法运算精解详析 法一:将减法转化为加法进行化简 ,( AB CD)( B) A DC B A 0.法二:利用 , 化简( AB CD)( B) A CD B( )( ) 0.法三: O , O,AC , BD ,( )( )( C)( A D B) 0.一点通 1计算两个空

7、间向量的和或差时,与平面向量完全相同运算中掌握好三角形法则和平行四边形法则是关键2计算三个或多个空间向量的和或差时,要注意以下几点:(1)三角形法则和平行四边形法则;(2)正确使用运算律;(3)有限个向量顺次首尾相连,则从第一个向量的起点指向最后一个向量的终点的向量,即表示这有限个向量的和向量3如图,在正方体 ABCDA 1B1C1D1 中,下列各式中运算结果为 1BD的是_(1) 1AD 1 B;(2) C 1;(3) ;(4) 1 1 1.解析:(1) AD B 1AD 1B;(2) BC 1 1 C ;(3) 1 1B;(4) 1BD A 1 D 1A 1.故(1)(2)正确答案:(1)

8、(2)4. 在平行六面体 ABCDA 1B1C1D1 中,M 为 AC 与 BD 的交点,若1AB a, 1Db,c,则_.( 用 a、b、c 表示)解析: 1BM 1 1A ( C)12c (ab)12 a bc.12 12答案: a bc12 12空间向量的线性运算的应用例 3 如图,设 A 是BCD 所在平面外的一点,G 是BCD 的重心求证: AG ( B C AD)13思路点拨 利用空间向量的线性运算和共线向量定理,用 AB、 C、 D表示,即可得出要证的结果精解详析 连结 BG,延长后交 CD 于 E,由 G 为BCD 的重心,知 BG E.23E 为 CD 的中点, B C D.

9、12 12AG AB E ( BC D)23 13 ()( )13 ( AB C D)13一点通 1在用已知向量表示未知向量的时候,要注意寻求两者之间的关系,通常可将未知向量进行一系列的转化,将其转化到与已知向量在同一四边形( 更多的是平行四边形) 或三角形中,从而可以建立已知向量与未知向量之间的关系式2在平行六面体中,要注意相等向量之间的代换,把一个向量用其他向量来表示,其实质就是把一个向量进行分解5在本例中,若 E 为 CD 的中点,且 GEm ABn Cp D,试求实数m,n,p 的值解: G B ( A )13 1313 12( ) A C D13 16 16m Bn p ,m ,n

10、,p .13 16 166.如图所示,已知四边形 ABCD 是空间四边形,E,H 分别是边AB, AD 的中点, F,G 分别是边 CB,CD 上的点,且C B, CD.23 23求证:四边形 EFGH 是梯形证明:E,H 分别是 AB,AD 的中点, A , A,12 12则 D B12 12 ( D B) (C )12 12 1212(32 32 ) (CG F),34 34EH 且| | | | G|.34又 F 不在直线 EH 上,四边形 EFGH 是梯形在对向量进行加、减运算时,一定要运用其运算法则及运算律来化简,特别要注意的是将某些向量进行平移,将其转化到同一平面中去求解解题时应结

11、合已知和所求,观察图形,作一些必要的辅助线,联想相关的运算法则和公式等,就近表示出所需要的向量,再对照目标,将不符合目标要求的向量做出新的调整,如此反复,直到所有的向量都符合要求为止对应课时跟踪训练( 十八) 1有下列命题:(1)单位向量一定相等;(2)起点不同,但方向相同且模相等的几个向量是相等向量;(3)相等的非零向量,若起点不同,则终点一定不同;(4)方向相反的两个单位向量互为相反向量;(5)起点相同且模相等的向量的终点的轨迹是圆其中正确的命题的个数为_个解析:(1)不正确,因为忽略方向;(2)方向相同,模相等的向量是相等向量,与起点无关,故(2)正确 (3)、(4) 正确; (5)不正

12、确,轨迹是个球面答案:32在直三棱柱 ABCA 1B1C1 中,若a, CBb, 1c,则 1AB_.解析:如图, 1AB 1 1B A 1C( B)c(ab)c ab.答案:cab3在下列命题中,错误命题的序号是_若 ab,则 a 与 b 不共线(R) ;若 a2b,则 a 与 b 共线;若 ma2b3c ,n 2 a4b6c ,则 mn;若 abc0,则 abc.解析:错,当 a0,b0, 0 时,a 与 b 共线,均正确答案:4设 e1,e 2 是空间两个不共线的向量,已知AB2e 1ke 2, Ce 13e 2, D2e 1e 2,且 A,B,D 三点共线,则 k_.解析: D (e

13、13e 2)(2e 1e 2)e 1 4e2,又 A,B,D 三点共线, AB ,即 2e1ke 2(e 14e 2),Error!k8.答案:85如图,已知空间四边形 ABCD 中, ABa2c, CD5a6b8c,对角线AC,BD 的中点分别为 E,F,则 _.( 用向量 a,b,c 表示)解析:设 G 为 BC 的中点,连结 EG,FG ,则 EF G AB CD12 12 (a2c) (5a6b8c )12 123a3b5c答案:3a3b5c6如图,在空间四边形 ABCD 中,G 为BCD 的重心,E,F 分别为边 CD 和 AD 的中点,试化简 A BE C,并在图中标出化简结果的向

14、量13 12解: G 是 BCD 的重心,BE 是 CD 边上的中线, GE B.13又 AC ( D)12 12 E F,12 12 G B13 12 A A (如图所示) 7已知正四棱锥 PABCD,O 是正方形 ABCD 的中心,Q 是 CD 的中点,求下列各式中 x,y,z 的值(1)OQ y Cz ;(2) Ax y D.解:如图:(1) P O Q ( PA C) Q12PC A,12 12y z .12(2)O 为 AC 的中点,Q 为 CD 的中点,P 2, PC D2 Q,PA2 O C, P 2 Q D, 2 2 ,x 2, y2.8已知 ABCDA 1B1C1D1 是平行

15、六面体(1)化简 1 ,并在图上以 A1A 的中点为起点标出计算结果;12 23(2)设 M 是 BD 的中点,N 是侧面 BCC1B1 对角线 BC1 上的点,且 BNNC 131,试用向量 AB, , 1来表示向量 MN.解:(1)先在图中标出 1A,为此可取 AA1 的中点 E,则 1A .12 12 1DC,在 D1C1 上取点 F,使 D1F D1C1,因此 B 1DC 1F,又23 23 23B 1A,从而 1 B A 1E 1 E.计算结果如图所12 23示(2) MN B D 1BC ( A) ( BC 1)12 34 12 34 ( A ) ( 1) D 1.12 34 12 14 34