ImageVerifierCode 换一换
格式:DOC , 页数:28 ,大小:531KB ,
资源ID:72126      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-72126.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年黑龙江省哈尔滨市道外区中考数学二模试卷(含答案解析))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2018年黑龙江省哈尔滨市道外区中考数学二模试卷(含答案解析)

1、2018 年黑龙江省哈尔滨市道外区中考数学二模试卷一、选择题:(1-10 题,每小题 3 分,共 30 分,每题只有一个答案)1 (3 分)地球半径约为 6400000 米,用科学记数法表示为(  )A0.6410 7 B6.410 6 C6410 5 D64010 42 (3 分)下列计算正确的是(  )Ax+xx 2 Bx 3x32x 3 C (x 3) 2x 6 Dx 3xx 33 (3 分)下列图案属于轴对称图形的是(  )A BC D4 (3 分)如果反比例函数 的图象经过点(2,3) ,那么 k 的值是(  )A B6 C D65 (3 分)

2、下列四个几何体中,俯视图为正方形的是(  )A 球 B 圆柱 C 圆锥 D 正方形6 (3 分)在 RtABC 中,C90,B25,AB5,则 BC 的长为(  )A5sin25 B5tan65 C5cos25 D5tan25 7 (3 分)现有一块长方形绿地,它的短边长为 20m,若将短边增大到与长边相等(长边不变) ,使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加 300m2,设扩大后的正方形绿地边长为 xm,下面所列方程正确的是(  )Ax(x20)300 Bx(x+20)300第 2 页(共 28 页)C60(x+20)300 D60(x 20

3、)3008 (3 分)如图,将一个边长分别为 4、8 的矩形纸片 ABCD 折叠,使点 C 与点 A 重合(AB 4,BC 8) ,则折痕 EF 的长度为(  )A B2 C D29 (3 分)如图,在ABC 中,D 是 AB 边上一点,DEBC,DFAC,下列结论正确的是(  )A B C D 10 (3 分)某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子 OA,O 恰为水面中心,安置在柱子顶端 A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下在过 OA 的任一平面上,建立平面直角坐标系(如图) ,水流喷出的高度 y(m)与水平距离 x( m)

4、之间的关系式是 yx 2+2x+3,则下列结论:(1)柱子OA 的高度为 3m;(2)喷出的水流距柱子 1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是 4m;(4)水池的半径至少要 3m 才能使喷出的水流不至于落在池外其中正确的有(  )A1 个 B2 个 C3 个 D4二、填空题(11-20 每小题 3 分,共计 30 分)第 3 页(共 28 页)11 (3 分)某日的最高气温为 5,最低气温为5,则这一天的最高气温比最低气温高      12 (3 分)计算:| |      13 (3 分)在函数 y 中

5、,自变量 x 的取值范围是     14 (3 分)分解因式:3x 327x     15 (3 分)不等式组 的解集是     16 (3 分)一个扇形的圆心角为 120,扇形的弧长 12,则扇形半径是     17 (3 分)一个不透明口袋里有黑球、白球各一个,除颜色外均相同,每次取出一个球,然后放回口袋里,小亮取了 5 次都是白球,当他第 6 次取时,取到白球的概率是     18 (3 分)如图,AB 是O 直径,D 是半圆弧 AB 中点,P 是 BA 延长线上一点,连接 PD交 AO

6、于点 C,连接 BC,若P25,则ABC      o19 (3 分)如图,在 RtABC 中,ACB90,BAC30,BC2,在同一平面内,以 AC 为一边作等边ACD,连接 BD,则 BD     20 (3 分)如图,在 RtABC 中,ACB90,ACBC,P 为 RtABC 外一点,且BPC 60,过点 A 作 ADPC 交 PC 于点 D,连接 BD若PDB45,BD 3,则 PC     三、解答题(21-22 每题 7 分, 23-24 每题 8 分,25-27 每题 10 分,共计 60 分)第 4 页(共

7、 28 页)21 (7 分)先化简,再求代数式 (1 )的值,其中 x2cos30+3tan4522 (7 分)如图,网格中的每个小正方形的边长均为 1 个单位长度,RtABC 的顶点均在格点上,建立平面直角坐标系后,点 A(4,3) ,点 B(1,1) ,点 C(4,1) (1)画出 Rt ABC 关于 y 轴对称的 RtA 1B1C1, (点 A、B、C 的对称点分别是A1、B 1、C 1) ,直接写出 A1 的坐标;(2)将 RtABC 向下平移 4 个单位,得到 RtA 2B2C2(点 A、B、C 的对应点分别是A2、B 2、C 2) ,画出 RtA 2B2C2,连接 A1C2,直接写

8、出线段 A1C2 的长23 (8 分)某学校为了丰富学生业余生活,决定组建绘画、摄影、读书和舞蹈兴趣活动小组,为了解学生最喜欢哪一种活动的人数,随机抽取了部分学生进行调查(每位学生必选且只能选一项) ,并将调查结果绘制成了两幅不完整的统计图,请你根据统计图上提供的信息回答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整;(2)在扇形统计图中,求出最喜欢“读书”所对应的圆心角度数;(3)若该校共有学生 2000 人,请你估计该校最喜欢读书活动的人数24 (8 分)已知:如图,在ABCD 中,DE、BF 分别是ADC 和ABC 的角平分线,交AB、 CD 于点 E、F ,连接 B

9、D、EF(1)求证:BD、EF 互相平分;第 5 页(共 28 页)(2)若A60,AE 2EB ,AD4,求四边形 DEBF 的周长和面积25 (10 分)小芳去商店购买甲、乙两种商品现有如下信息:信息 1:甲、乙两种商品的进货单价之和是 5 元,按零售单价购买甲商品 3 件和乙商品2 件,共付了 19 元;信息 2:甲商品零售单价比甲进货单价多 1 元,乙商品零售单价比乙进货单价的 2 倍少1 元请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)若小芳准备用不超过 400 元钱购买 100 件甲、乙两种商品,其中甲种商品至少购买多少件?26 (10 分)如图,AB

10、C 内接于O,弦 ADBC 垂足为 H,ABC 2CAD(1)如图 1,求证:ABBC;(2)如图 2,过点 B 作 BMCD 垂足为 M,BM 交O 于 E,连接 AE、HM,求证:AEHM ;(3)如图 3,在(2)的条件下,连接 BD 交 AE 于 N,AE 与 BC 交于点 F,若 NH2,AD11,求线段 AB 的长27 (10 分)如图,直线 yx+8 与 x 轴、y 轴分别交于点 A、B,直线 CD 与 x 轴、y 轴交于点 C、D,直线 AB 与 CD 交于点 E,CDDE,tan ECA 第 6 页(共 28 页)(1)如图 1,求点 E 坐标;(2)如图 2,点 P 为 x

11、 轴下方直线 AB 上一点,点 Q(n,0)为 x 轴上一点(n8) ,设点 P 横坐标为 m,若PQE 的面积为 10,求 n 与 m 的函数关系式;(3)如图 3,在(2)的条件下,把线段 QP 沿点 Q 顺时针旋转 90,使得点 P 落在点N 处,连接 NE、NP,若 2PNE+PQE360,求直线 PQ 的解析式第 7 页(共 28 页)2018 年黑龙江省哈尔滨市道外区中考数学二模试卷参考答案与试题解析一、选择题:(1-10 题,每小题 3 分,共 30 分,每题只有一个答案)1 (3 分)地球半径约为 6400000 米,用科学记数法表示为(  )A0.6410 7 B6

12、.410 6 C6410 5 D64010 4【分析】科学记数法的形式为 a10n,其中 1a10,n 为整数【解答】解:64000006.410 6故选:B【点评】此题考查用科学记数法表示较大的数,其规律为 1|a| 10,n 为比原数的整数位数小 1 的正整数2 (3 分)下列计算正确的是(  )Ax+xx 2 Bx 3x32x 3 C (x 3) 2x 6 Dx 3xx 3【分析】根据整式的运算法则即可求出答案【解答】解:(A)原式2x,故 A 错误;(B)原式x 6,故 B 错误;(D)原式x2,故 D 错误;故选:C【点评】本题考查整式的运算法则,解题的关键是熟练运用熟练运

13、用整式的运算法则,本题属于基础题型3 (3 分)下列图案属于轴对称图形的是(  )A BC D【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A 有一条第 8 页(共 28 页)对称轴,由此即可得出结论【解答】解:A、能找出一条对称轴,故 A 是轴对称图形;B、不能找出对称轴,故 B 不是轴对称图形;C、不能找出对称轴,故 C 不是轴对称图形;D、不能找出对称轴,故 D 不是轴对称图形故选:A【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关

14、键4 (3 分)如果反比例函数 的图象经过点(2,3) ,那么 k 的值是(  )A B6 C D6【分析】把(2,3)代入函数解析式即可求 k【解答】解:把(2,3)代入函数解析式,得 3 ,k6故选:B【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上5 (3 分)下列四个几何体中,俯视图为正方形的是(  )A 球 B 圆柱 C 圆锥 D 正方形【分析】分别利用几何体得出其俯视图的形状进而得出答案【解答】解:A、其俯视图为圆,故此选项错误;B、其俯视图为圆,故此选项错误;C、其俯视图为圆,且有圆心,故此选项错误;D、其俯视图为正方形,故此选

15、项正确;故选:D【点评】此题主要考查了简单几何体的三视图,正确掌握俯视图的定义是解题关键6 (3 分)在 RtABC 中,C90,B25,AB5,则 BC 的长为(  )第 9 页(共 28 页)A5sin25 B5tan65 C5cos25 D5tan25 【分析】在 RtABC 中,由 AB 及B 的值,可求出 BC 的长【解答】解:在 RtABC 中,C90,B25,AB5,BCABcosB5cos25故选:C【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键7 (3 分)现有一块长方形绿地,它的短边长为 20m,若将短边增大到与长边相等(长边不变) ,

16、使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加 300m2,设扩大后的正方形绿地边长为 xm,下面所列方程正确的是(  )Ax(x20)300 Bx(x+20)300C60(x+20)300 D60(x 20)300【分析】设扩大后的正方形绿地边长为 xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可【解答】解:设扩大后的正方形绿地边长为 xm,根据题意得x(x20)300故选:A【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系8 (3 分)如图,将一个边长分别为 4、8 的矩形纸片 ABCD 折叠,使点 C 与点 A 重合

17、(AB 4,BC 8) ,则折痕 EF 的长度为(  )A B2 C D2【分析】先过点 F 作 FMBC 于 M利用勾股定理可求出 AE,再利用翻折变换的知识,可得到 AECE ,AEFCEF ,再利用平行线可得 AEFAFE,故有第 10 页(共 28 页)AEAF求出 EM,再次使用勾股定理可求出 EF 的长【解答】解:过点 F 作 FMBC 于 GM,EF 是直角梯形 AECD 的折痕AECE, AEFCEF又ADBC,AFE FEM,根据翻折不变性,AEFFEM,AFE AEF,AEAF在 Rt ABE 中,设 BEx ,AB4,AECE 8x x 2+42(8x) 2 解

18、得 x3在 Rt FEM 中, EMBMBEAF BEAEBE5 32,FM4,EF 2 故选:D【点评】本题考查了折叠的知识,矩形的性质,勾股定理等知识点的理解和运用,关键是根据题意得出方程 x2+42(8x) 29 (3 分)如图,在ABC 中,D 是 AB 边上一点,DEBC,DFAC,下列结论正确的是(  )A B C D 【分析】根据平行线分线段成比例定理进行判断即可【解答】解:DEBC,第 11 页(共 28 页) ,故 A 错误,DEBC,DFAC,四边形 DFCE 是平行四边形,DECF,DFCE,DEBC, ,故 B 错误;DEBC, ,故 C 正确;DEBC,DF

19、AC, ,故 D 错误故选:C【点评】本题考查的是平行线分线段成比例定理的应用,灵活运用定理、找准对应关系是解题的关键10 (3 分)某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子 OA,O 恰为水面中心,安置在柱子顶端 A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下在过 OA 的任一平面上,建立平面直角坐标系(如图) ,水流喷出的高度 y(m)与水平距离 x( m)之间的关系式是 yx 2+2x+3,则下列结论:(1)柱子OA 的高度为 3m;(2)喷出的水流距柱子 1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是 4m;(4)水池的半径至少要 3m

20、才能使喷出的水流不至于落在池外其中正确的有(  )第 12 页(共 28 页)A1 个 B2 个 C3 个 D4【分析】根据题目中的二次函数解析式可以判断各个小题中的说法是否正确,从而可以解答本题【解答】解:yx 2+2x+3(x 1) 2+4,当 x0 时,y 3,即 OA3m,故(1)正确,当 x1 时,y 取得最大值,此时 y4,故(2)和(3)正确,当 y0 时,x3 或 x1(舍去) ,故(4)正确,故选:D【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答二、填空题(11-20 每小题 3 分,共计 30 分)11 (3 分)

21、某日的最高气温为 5,最低气温为5,则这一天的最高气温比最低气温高 10 【分析】直接利用有理数的加减运算法则计算得出答案【解答】解:某日的最高气温为 5,最低气温为5,这一天的最高气温比最低气温高:5(5)10() 故答案为:10【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键12 (3 分)计算:| |  2   【分析】直接利用绝对值的性质以及二次根式的性质化简得出答案【解答】解:| | 2 故答案为:2 【点评】此题主要考查了实数的性质,正确化简二次根式是解题关键13 (3 分)在函数 y 中,自变量 x 的取值范围是 x   第 13 页(

22、共 28 页)【分析】根据分母不等于 0 列式计算即可得解【解答】解:2x30,x ,故答案为:x 【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数14 (3 分)分解因式:3x 327x 3x (x+3) (x3) 【分析】首先提取公因式 3x,再进一步运用平方差公式进行因式分解【解答】解:3x 327x3x(x 29)3x(x+3) (x3) 【点评】本题考查用提公因式法和公式法进行因式分解的能力一个多项式有公因式首先提取公因式,然后再用

23、其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止15 (3 分)不等式组 的解集是 2x2 【分析】先求出每个不等式的解集,再求出不等式组的解集即可【解答】解:解不等式,得 x2,解不等式 ,得 x2,不等式组的解是2x2,故答案为:2x2【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键16 (3 分)一个扇形的圆心角为 120,扇形的弧长 12,则扇形半径是 18 【分析】利用弧长公式 l 进行计算即可第 14 页(共 28 页)【解答】解:弧长 12,解得 r18故答案为:18【点评】本题考查了弧长的计算,解题的关键是利用弧长公式计算弧长1

24、7 (3 分)一个不透明口袋里有黑球、白球各一个,除颜色外均相同,每次取出一个球,然后放回口袋里,小亮取了 5 次都是白球,当他第 6 次取时,取到白球的概率是   【分析】直接利用概率的意义,每次摸到白球的概率始终为 ,进而得出答案【解答】解:一个不透明口袋里有黑球、白球各一个,除颜色外均相同,每次取出一个球,然后放回口袋里,当他第 6 次取时,取到白球的概率是与每一次摸到白球的概率相同为: 故答案为: 【点评】此题主要考查了概率的意义,正确把握概率意义是解题关键18 (3 分)如图,AB 是O 直径,D 是半圆弧 AB 中点,P 是 BA 延长线上一点,连接 PD交 AO 于点

25、C,连接 BC,若P25,则ABC 20  o【分析】连接 OD,根据圆周角定理求出DCB,根据三角形外角性质求出即可【解答】解:连接 OD,D 是半圆弧 AB 中点,DOB DOP90,DCB DOB45,P25,P+ABCDCB,第 15 页(共 28 页)ABC452520,故答案为:20【点评】本题考查了圆周角定理和三角形外角性质,能根据圆周角的求出DCB DOB 是解此题的关键19 (3 分)如图,在 RtABC 中,ACB90,BAC30,BC2,在同一平面内,以 AC 为一边作等边ACD,连接 BD,则 BD 2 或 2   【分析】由于点 D 不确定,故需要

26、对 D 的位置进行讨论,然后根据等边三角形的性质以及含 30 度角的直角三角形的性质即可求出答案【解答】解:当点 D 位于 AC 边的下方时,如图所示,过点 D 作 DEBC 的延长线于点 E,连接 BD,BAC30,BC2,AB4,由勾股定理可知:AC2ACD 是等边三角形,ACD60,CDAC 2 ,DCE30,DE ,由勾股定理可知:CE3,BE2+35由勾股定理可知:BD2当点 D 位于 AC 边上方时,如图所示,DAC60,DABCAB30,在ADB 与ACB 中,第 16 页(共 28 页)ADBACB(SAS)ADBACB90,BDCBCD30,BDBC2故答案为:2 或 2【点

27、评】本题考查等边三角形的性质,涉及等边三角形的性质,全等三角形的判定与性质,含 30 度角的直角三角形的性质,综合程度较高,属于中等题型20 (3 分)如图,在 RtABC 中,ACB90,ACBC,P 为 RtABC 外一点,且BPC 60,过点 A 作 ADPC 交 PC 于点 D,连接 BD若PDB45,BD 3,则 PC 6+   【分析】根据题意,作出合适的辅助线,然后根据特殊角的三角函数值和全等三角形的性质可以解答本题第 17 页(共 28 页)【解答】解:作 BEPC 交 PC 于点 E,PDB45,BD 3 ,BE3,DE 3,BEP 90,BPE 60,BE3,EP

28、 ,在 RtABC 中,ACB 90,ACBC ,BEC90,CADBCE,在ADC 和CEB 中,ADCCEB(AAS) ,CDBE ,BE3,CD3,CPCD+DE+ EP3+3+ 6+ ,故答案为:6+ 【点评】本题考查全等三角形的判定与性质、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题(21-22 每题 7 分, 23-24 每题 8 分,25-27 每题 10 分,共计 60 分)21 (7 分)先化简,再求代数式 (1 )的值,其中 x2cos30+3tan45【分析】根据分式的运算法则即可求出答案【解答】解:当 x2cos3

29、0 +3tan45时,x2 +31 +3原式 第 18 页(共 28 页) (x+3)【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型22 (7 分)如图,网格中的每个小正方形的边长均为 1 个单位长度,RtABC 的顶点均在格点上,建立平面直角坐标系后,点 A(4,3) ,点 B(1,1) ,点 C(4,1) (1)画出 Rt ABC 关于 y 轴对称的 RtA 1B1C1, (点 A、B、C 的对称点分别是A1、B 1、C 1) ,直接写出 A1 的坐标;(2)将 RtABC 向下平移 4 个单位,得到 RtA 2B2C2(点 A、B、C 的对应点分别是

30、A2、B 2、C 2) ,画出 RtA 2B2C2,连接 A1C2,直接写出线段 A1C2 的长【分析】 (1)根据 RtABC 关于 y 轴对称的得到 RtA 1B1C1,进行作图即可;(2)根据 Rt ABC 向下平移 4 个单位得到 RtA 2B2C2,进行作图即可;再根据线段长进行计算即可【解答】解:(1)如图所示:RtA 1B1C1 即为所求,A 1 的坐标为(4,3) ;第 19 页(共 28 页)(2)如图所示:RtA 2B2C2 即为所求,A 1C2 的长 【点评】本题主要考查了利用对称变换以及平移变换进行作图,解题时注意:对称作图有自己独特的特点,决定图形位置的因素较多确定平

31、移后图形的基本要素有两个:平移方向、平移距离23 (8 分)某学校为了丰富学生业余生活,决定组建绘画、摄影、读书和舞蹈兴趣活动小组,为了解学生最喜欢哪一种活动的人数,随机抽取了部分学生进行调查(每位学生必选且只能选一项) ,并将调查结果绘制成了两幅不完整的统计图,请你根据统计图上提供的信息回答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整;(2)在扇形统计图中,求出最喜欢“读书”所对应的圆心角度数;(3)若该校共有学生 2000 人,请你估计该校最喜欢读书活动的人数【分析】 (1)用舞蹈人数除以其对应百分比可得总人数,总人数减去其它项目人数求得摄影的人数即可补全图形;(2)

32、用 360乘以“读书”人数占被调查人数的比例可得;(3)总人数乘以样本中“读书”人数所占比例可得【解答】解:(1)这次被调查的学生共有 4020%100(名) ;第 20 页(共 28 页)摄影的人数为 10016402024(人) ,补全图形如下:(2) “读书”所对应的扇形的圆心角的度数为 360144;(3)由样本估计总体得 2000800(人)答:估计喜欢“读书”的共有 800 人【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24 (8 分)

33、已知:如图,在ABCD 中,DE、BF 分别是ADC 和ABC 的角平分线,交AB、 CD 于点 E、F ,连接 BD、EF(1)求证:BD、EF 互相平分;(2)若A60,AE 2EB ,AD4,求四边形 DEBF 的周长和面积【分析】 (1)欲证明 BD、EF 互相平分,只要证明四边形 DEBF 是平行四边形即可;(2)想办法求出:BE、DE 即可解决问题;【解答】 (1)证明:四边形 ABCD 是平行四边形,CDAB ,CDAB,AD BC,DE、BF 分别是ADC 和ABC 的角平分线,第 21 页(共 28 页)ADECDE,CBF ABF,CDAB ,AED CDE,CFBABF,

34、AEDADE,CFBCBF,AEAD ,CF CB,AECF,ABAECDCF 即 BEDF,DFBE,四边形 DEBF 是平行四边形BD、EF 互相平分;(2)A60,AE AD,ADE 是等边三角形,AD4,DEAE4,AE2EB,BE2,四边形 DEBF 的周长2(BE +DE)2(4+2)12,过 D 点作 DGAB 于点 G,在 Rt ADG 中,AD4, A60,DGAD cosA 4 2 ,四边形 DEBF 的面积BEDG22 4 【点评】本题考查平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型25 (10 分)小芳去商

35、店购买甲、乙两种商品现有如下信息:信息 1:甲、乙两种商品的进货单价之和是 5 元,按零售单价购买甲商品 3 件和乙商品2 件,共付了 19 元;信息 2:甲商品零售单价比甲进货单价多 1 元,乙商品零售单价比乙进货单价的 2 倍少1 元请根据以上信息,解答下列问题:第 22 页(共 28 页)(1)甲、乙两种商品的进货单价各多少元?(2)若小芳准备用不超过 400 元钱购买 100 件甲、乙两种商品,其中甲种商品至少购买多少件?【分析】 (1)根据题意,列出方程组求解,即可解决问题(2)根据题意列出关于 m 的不等式,即可解决问题【解答】解:(1)设甲、乙两种商品的进货单价分别为 x、y 元

36、,解得:答:甲、乙两种商品的进货单价分别为 2 元、3 元;(2)由(1)得:甲商品零售价为 x+13(元) ,乙商品零售价为 2y135(元)设甲种商品购买 m 件3m+5( 100m)400,解得:m50,答;甲种商品至少购买 50 件【点评】本题考查了二元一次方程组和不等式的实际应用,解题关键是根据题中所给的信息找出其中的等量关系进行求解,难度一般26 (10 分)如图,ABC 内接于O,弦 ADBC 垂足为 H,ABC 2CAD(1)如图 1,求证:ABBC;(2)如图 2,过点 B 作 BMCD 垂足为 M,BM 交O 于 E,连接 AE、HM,求证:AEHM ;(3)如图 3,在(

37、2)的条件下,连接 BD 交 AE 于 N,AE 与 BC 交于点 F,若 NH2,AD11,求线段 AB 的长【分析】 (1)设CADa,表示出ABC2a,C90 a,BAD 902a,第 23 页(共 28 页)进而得出BAC902a+a90a,即可得出结论;(2)先判断出NDEN BAN,进而得出 DEDN,BABN,再判断出EMNM,HNHA ,最后利用三角形的中位线定理即可得出结论;(3)先判断出BDMBDH ,得出 DHMH,MBDHBD,进而判断出FNBENB ,AFH ACH ,得出 HFHC,进而判断出 ,得出ACEC4 ,再翻折CHD 至CHG ,得出 CGCDAG,进而

38、CD112x,再用勾股定理求出 x13,x 2 (舍去)即可得出 CD5,CH4,AH8,进而求出BH6,最后用勾股定理即可得出结论【解答】 (1)证明:设CADa,则ABC2a,C90a,BAD902a,BAC902a+a90 a,BACACBABBC,(2)证明:如图 2,延长 AD、BM 交于点 N,连接 EDDENDAB,NBCD,BCDBAN ,NDENBANDEDN,BABN,又BHAN,DM ENEMNM,HNHA ,MH AE,(3)连接 CEBDABCA,BDM BAC ,由(1)知BCABACBDABDM,BDMBDH,DHMH , MBDHBD,BDMH ,第 24 页(

39、共 28 页)又MH AE ,BDEF,FNBENB,同理可证AFHACH,HFHC,又FNNENHEC,EC2NH,又NH2 ,EC4EAC2AEC2aABC, ,ACEC4设 HDx,AH11x,ADC2CAD,翻折CHD 至CHG,CGCD AGAHCD+DH, CDAH DH11xx112x又AC 2AH 2CD 2DH 2,(4 ) 2(11x) 2(112x) 2x 2x 13,x 2 (舍去)CD5,CH4,AH8,又 tan2,BH6,AB 10第 25 页(共 28 页)【点评】此题是圆的综合题,主要考查了圆周角定理,折叠的性质,全等三角形的判定和性质,勾股定理,锐角三角函数

40、,作出辅助线是解本题的关键27 (10 分)如图,直线 yx+8 与 x 轴、y 轴分别交于点 A、B,直线 CD 与 x 轴、y 轴交于点 C、D,直线 AB 与 CD 交于点 E,CDDE,tan ECA (1)如图 1,求点 E 坐标;(2)如图 2,点 P 为 x 轴下方直线 AB 上一点,点 Q(n,0)为 x 轴上一点(n8) ,设点 P 横坐标为 m,若PQE 的面积为 10,求 n 与 m 的函数关系式;(3)如图 3,在(2)的条件下,把线段 QP 沿点 Q 顺时针旋转 90,使得点 P 落在点N 处,连接 NE、NP,若 2PNE+PQE360,求直线 PQ 的解析式【分析

41、】 (1)在图 1 中,过点 E 作 EEx 轴于点 E设点 E 的坐标为第 26 页(共 28 页)(m,m+8) ,只要证明 OEEE ,由此构建方程即可解决问题;(2)如图 2 中,作 QHPE 于 H由题意:PE (m4) ,QH , (m4) 10,(3)作 QM NP 交 EN 延长线于点 M延长 ME 至 K,使 QKQM,作 PLx 轴于点L,利用方程组求出 m、n 的值即可推出 P、Q 两点坐标,再利用待定系数法即可解决问题;【解答】解:(1)在图 1 中,过点 E 作 EEx 轴于点 E,设点 E 的坐标为(m,m+8)ODEE,CDDE,OCOE,tanECA ,CE2E

42、E ,EEOE ,mm+8,m4,E(4,4) (2)如图 2 中,作 QHPE 于 H第 27 页(共 28 页)由题意:PE (m4) , QH , (m4) 10,n +8(3)作 QM NP 交 EN 延长线于点 M延长 ME 至 K,使 QKQM,作 PLx 轴于点L,2PNE+ PQE 360, PQE180PNEQNQP,QMPN,QM 平分 NQP ,QNMQPM ,MNMP,12,MNPMPN, PQEMNP ,PQE2MNP ,第 28 页(共 28 页)MNP+ MPN+NMP180,PQE+NMP180,QEM+QPM 180,QEK+QEM180,QEKQPM,13,23,QEKQPM,QEQP QN,PEN 的外接圆的圆心为 Q,NPE EQN,QAPQNP45,NPEOQN,QO 平分EQN,OQ 垂直平分 EN,FNEF4,PLQFNQ,FNQL4,m+n4 ,n +8,解得:m 114,n 110,m 22, n22(舍去)P(14,6) ,Q(10,0) ,设 ykx+b 代入得解得:k ,b15PQ 解析式为:y x+15【点评】本题考查一次函数综合题、平行线的性质、全等三角形的判定和性质、一元一次方程方程组、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题