ImageVerifierCode 换一换
格式:PPTX , 页数:21 ,大小:1.43MB ,
资源ID:67365      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-67365.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版中考数学总复习优化设计:第15讲-全等三角形-讲练课件(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020版中考数学总复习优化设计:第15讲-全等三角形-讲练课件(含答案)

1、第15讲 全等三角形,考点一,考点二,考点三,考点一全等三角形的概念和性质 1.全等三角形:能够完全重合 的两个三角形叫做全等三角形. 2.全等三角形的性质: (1)全等三角形的对应边相等 ,全等三角形的对应角 相等; (2)全等三角形周长相等 ,面积相等 ; (3)全等三角形对应的中线、高、角平分线都相等.,考点一,考点二,考点三,考点二全等三角形的判定,考点一,考点二,考点三,考点一,考点二,考点三,考点三角平分线的性质及判定 1.角的平分线的性质:角的平分线上的点到角的两边 的距离相等. 2.角的平分线的判定:角的内部到角的两边的距离相等的点在角的平分线 上. 3.三角形角平分线的性质:

2、三角形的三条角平分线交于一点,且这一点到三角形三边 的距离相等.,考法1,考法2,考法3,选用合适的方法判定三角形全等 全等三角形的五种判定方法(SSS,SAS,ASA,AAS,HL)中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,并且得是两角的夹边;若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.,考法1,考法2,考法3,例1(2017湖南郴州)已知在ABC中,ABC=ACB,点D,E分别为边AB,AC的中点,求证:BE=CD. 证明ABC=ACB,AB=AC. 点D,E分别是AB,AC的中点,

3、AD=AE.,ABEACD,BE=CD. 方法点拨证明三角形全等有五种方法SSS,SAS,ASA,AAS, HL,它们各自独立,解题时应注意选择合适的方法.当然,在解决一个问题时,有时会用到一种或多种三角形全等的判定方法.,考法1,考法2,考法3,综合运用全等三角形的判定与性质 全等三角形的性质有“对应边相等,对应角相等”,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.,考法1,考法2,考法3,例2(2017贵州黔东南)如图,点B,F,C,

4、E在一条直线上,已知FB=CE,ACDF,请你添加一个适当的条件 ,使得ABCDEF. 答案A=D(答案不唯一) 解析添加A=D.理由如下: FB=CE,BC=EF. 又ACDF,ACB=DFE.,ABCDEF(AAS).,考法1,考法2,考法3,角平分线的判定和性质 判定角平分线除了利用角平分线的定义以外,还有判定定理:到角两边距离相等的点在角的平分线上.角平分线具有性质:角的平分线上的点到角的两边的距离相等. 这里的距离是指点到角的两边垂线段的长;角平分线的性质可以独立作为证明两条线段相等的依据,有时不必证明全等.,考法1,考法2,考法3,例3(2016湖南怀化)如图,OP为AOB的角平分

5、线,PCOA, PDOB,垂足分别是C,D,则下列结论错误的是( ) A.PC=PD B.CPD=DOP C.CPO=DPO D.OC=OD 答案B 解析OP为AOB的角平分线,PCOA,PDOB,垂足分别是C,D, PC=PD,故A正确;,OCPODP, CPO=DPO,OC=OD,故C,D正确; 不能得出CPD=DOP,故B错误. 故选B.,考法1,考法2,考法3,方法点拨涉及角平分线的问题,应尽量直接应用定理,避免证明两个三角形全等,从而简化解题的过程.,1.(2016甘肃天水)(1)如图1,已知ABC,以AB,AC为边分别向ABC外作等边三角形ABD和等边ACE,连接BE,CD,请你完

6、成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD; (2)如图2,已知ABC,以AB,AC为边分别向外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?并说明理由; (3)运用(1),(2)解答中所积累的经验和知识,完成下题: 如图(3),要测量池塘两岸相对的两点B,E的距离,已经测得ABC=45,CAE=90,AB=BC=100米,AC=AE,求BE的长(结果保留根号).,(1)证明:如图1,ABD和ACE都是等边三角形, AD=AB,AC=AE,DAB=EAC=60, DAC=BAE, DACBAE, BE=CD. (2)解:BE=CD.理由如下

7、,如图2, 在正方形ABFD和正方形ACGE中, DAB=EAC=90, DAB+BAC=EAC+BAC, 即DAC=BAE,DACBAE, BE=CD.,(3)解:由(1)(2)的解题经验可知:过点A向ABC外作等腰直角三角形ABD,使DAB=90,AD=AB=100米,ABD=45,如图3,连接CD,则由(2)可得:BE=CD, ABC=45, DBC=90,2.(2017甘肃张掖)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,求EF的长.,(1)证明:四边形ABCD

8、是矩形,O是BD的中点, A=90,AD=BC=4,ABDC,OB=OD, OBE=ODF,BOEDOF(ASA), EO=FO, 四边形BEDF是平行四边形.,(2)解:当四边形BEDF是菱形时,BDEF, 设BE=x,则DE=x,AE=6-x, 在RtADE中,DE2=AD2+AE2, x2=42+(6-x)2,3.(2017甘肃天水)ABC和DEF是两个全等的等腰直角三角形,BAC=EDF=90,DEF的顶点E与ABC的斜边BC的中点重合,将DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图,当点Q在线段AC上,且AP=AQ时,求证:BPECQE; (2)如图,当点Q在线段CA的延长线上时,求证:BPECEQ;并求当BP=2,CQ=9时,BC的长.,(1)证明:ABC是等腰直角三角形, B=C=45,AB=AC, AP=AQ, BP=CQ, E是BC的中点, BE=CE, 在BPE和CQE中,BPECQE(SAS).,(2)解:连接PQ, ABC和DEF是两个全等的等腰直角三角形, B=C=DEF=45, BEQ=EQC+C, 即BEP+DEF=EQC+C, BEP+45=EQC+45, BEP=EQC, BPECEQ,