ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.14MB ,
资源ID:66249      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-66249.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【全国Ⅱ卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【全国Ⅱ卷】2019年普通高校招生全国统一考试数学(文科)试卷(含答案解析)

1、绝密启用前2019 年普通高等学校招生全国统一考试文科数学本试卷共 5 页。考试结束后,将本试卷和答题卡一并交回注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共 12 小题,每小题 5 分,

2、共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合 , ,则 AB=|1Ax|2BxA. (1,+) B. (,2)C. (1,2) D. 【答案】C【解析】【分析】本题借助于数轴,根据交集的定义可得【详解】由题知, ,故选 C(1,2)AB【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查易错点是理解集合的概念及交集概念有误,不能借助数轴解题2.设 z=i(2+i),则 =zA. 1+2i B. 1+2iC. 12i D. 12i【答案】D【解析】【分析】本题根据复数的乘法运算法则先求得 ,然后根据共轭复数的概念,写出 z z【详解】 ,2i()

3、i1iz所以 ,选 D12【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查理解概念,准确计算,是解答此类问题的基本要求部分考生易出现理解性错误3.已知向量 a=(2,3) ,b=(3,2) ,则| ab|=A. B. 22C. 5 D. 50【答案】A【解析】【分析】本题先计算 ,再根据模的概念求出 ab|ab【详解】由已知, ,(2,3),(1,)所以 ,|(1)故选 A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错4.生物实验室有 5

4、只兔子,其中只有 3 只测量过某项指标,若从这 5 只兔子中随机取出 3 只,则恰有 2 只测量过该指标的概率为A. B. 23 35C. D. 51【答案】B【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解【详解】设其中做过测试的 3 只兔子为 ,剩余的 2 只为 ,则从这 5 只中任取 3 只的所有取法有,abc,AB, 共 10,abcAabBcABc,b,c,bAB种其中恰有 2 只做过测试的取法有 共 6 种,,a所以恰有 2 只做过测试的概率为 ,选 B63105【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、

5、基本计算能力的考查应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法” ,可最大限度的避免出错5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A. 甲、乙、丙 B. 乙、甲、丙C. 丙、乙、甲 D. 甲、丙、乙【答案】A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故 3 人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若

6、丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选 A【点睛】本题将数学知识与时政结合,主要考查推理判断能力题目有一定难度,注重了基础知识、逻辑推理能力的考查6.设 f(x)为奇函数,且当 x0 时,f (x)= ,则当 x 0,代入可得 ,结合奇偶性可得 .()fx()fx【详解】 是奇函数, 当 时, , ,得()f0201f x0()e1()xff故选 D()e1xf【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养采取代换法,利用转化与化归的思想解题7.设 , 为两个平面,则 的充要条件是A. 内有无数条直

7、线与 平行B. 内有两条相交直线与 平行C. , 平行于同一条直线D. , 垂直于同一平面【答案】B【解析】【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知: 内两条相交直线都与 平行是 的充分条件,由面面平行性质/定理知,若 ,则 内任意一条直线都与 平行,所以 内两条相交直线都与 平行是 的必/ /要条件,故选 B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若 ,则 ”此类的错误,/aba/8.若 x1= ,x 2= 是函数 f(x

8、)= ( 0)两个相邻的极值点,则 =43sinA. 2 B. 32C. 1 D. 1【答案】A【解析】【分析】从极值点可得函数 的 周期,结合周期公式可得 .【详解】由题意知, 的周期 ,得 故选 A()sinfx23()4T2【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养采取公式法,利用方程思想解题9.若抛物线 y2=2px(p0)的焦点是椭圆 的一个焦点,则 p=231xypA. 2 B. 3C. 4 D. 8【答案】D【解析】【分析】利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如pp时,抛物线焦点为(1,0)

9、 ,椭圆焦点为(2,0) ,排除 A,同样可排除 B,C,故选 D2p【详解】因为抛物线 的焦点 是椭圆 的一个焦点,所以 ,2()ypx(,)p231xyp23()p解得 ,故选 D8p【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养10.曲线 y=2sinx+cosx 在点(,1)处的切线方程为A. B. 10210xyC. D. 2xy 【答案】C【解析】【分析】先判定点 是否为切点,再利用导数的几何意义求解.(,1)【详解】当 时, ,即点 在曲线 上x2sinco1y(,)2sincoyx则 在点 处的切线方程为2cosi,ysi2,x si(,1),即 故选

10、C(1)()x0y【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养采取导数法,利用函数与方程思想解题学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程11.已知 a(0, ) ,2sin2=cos2+1,则 sin=2A. B. 15 5C. D. 3 25【答案】B【解析】【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为 1 关系得出答案【详解】 , 2sincos2124sincos.0,cos02,又 , ,又 ,si0,i22sis115in,i

11、5sin,故选 B5n【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉12.设 F 为双曲线 C: (a0,b0)的右焦点, O 为坐标原点,以 OF 为直径的圆与圆21xyx2+y2=a2 交于 P、Q 两点若 |PQ|=|OF|,则 C 的离心率为A. B. 3C. 2 D. 5【答案】A【解析】【分析】准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 关系,可求双曲线的离心率【详解】设 与 轴交于点 ,由对称性可知

12、 轴,PQxAPQx又 , 为以 为直径的圆的半径,|OFc|,2cOF为圆心 A|,又 点在圆 上,,2cP22xya,即 24a22,cce,故选 Ae【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来二、填空题:本题共 4 小题,每小题 5 分,共 20 分13.若变量 x,y 满足约束条件 则 z=3xy 的最大值是_.2360xy,【答案】9.【解析】【分析】作出可行域,平移 找到目标函数取到最大值的点,求出点的坐

13、标,代入目标函数可得 .30xy【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形 ABC 区域,根据直线 中的 表示纵截距的相反数,当直线30xyzz过点 时, 取最大值为 93zxy3,0C(z【点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养采取图解法,利用数形结合思想解题搞不清楚线性目标函数 的 几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值14.我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有 10 个车次的正点率为 0.97,有20 个车次的正点率为 0.98,有 10 个车次的正点率为

14、0.99,则经停该站高铁列车所有车次的平均正点率的估计值为_.【答案】098.【解析】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题【详解】由题意得,经停该高铁站的列车正点数约为 ,其中高铁个10.9720.81.93.2数为 10+20+10=40,所以该站所有高铁平均正点率约为 3.4【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养侧重统计数据的概率估算,难度不大易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值15. 的内角 A,B,C 的对边分别为 a,b,c .已知 bsinA+acosB=0,则 B=_.

15、V【答案】 .34【解析】【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得 , 得sinsico0BAB(,)(0,)ABsin0,A,即 , 故选 Dsinco0Bta13.4【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养采取定理法,利用转化与化归思想解题忽视三角形内角的范围致误,三角形内角均在 范围内,化边为角,结合三角函(0,)数的恒等变化求角16.中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是由两种或两种以上的正多边形围成的

16、多面体.半正多面体体现了数学的对称美图 2 是一个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1则该半正多面体共有_个面,其棱长为_【答案】 (1). 共 26 个面. (2). 棱长为 .21【解析】【分析】第一问可按题目数出来,第二问需 在 正方体中简单还原出物体位置,利用对称性,平面几何解决【详解】由图可知第一层与第三层各有 9 个面,计 18 个面,第二层共有 8 个面,所以该半正多面体共有个面1826如图,设该半正多面体的棱长为 ,则 ,延长 与 交于点 ,延长 交正方体棱于xABExBCFEGBC,由半正多面体对称性可知, 为等腰直角三角形

17、,HG,22, (1)BGECHxxx,即该半正多面体棱长为 12xx【点睛】本题立意新颖,空间想象能力要求高,物体位置还原 是 关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答(一)必考题:共 60 分。17.如图,长方体 ABCDA1B1C1D1 的底面 ABCD 是正方形,点 E 在棱 AA1 上,BEEC 1.(1)证明:BE平面 EB1C1;(2)若 AE=A1E

18、,AB =3,求四棱锥 的体积1EBC【答案】 (1)见详解;(2)18【解析】【分析】(1)先由长方体得, 平面 ,得到 ,再由 ,根据线面垂直的判定定1BC1AB1CE1BC理,即可证明结论成立;(2)先设长方体侧棱长为 ,根据题中条件求出 ;再取 中点 ,连结 ,证明 平面2a3a1FEF,根据四棱锥的体积公式,即可求出结果.1BC【详解】 (1)因为在长方体 中, 平面 ;1ABCD1BC1AB平面 ,所以 ,E11E又 , ,且 平面 , 平面 ,BC1111EC所以 平面 ; 1(2)设长方体侧棱长为 ,则 ,2a1AEa由(1)可得 ;所以 ,即 ,1EB221B21BE又 ,所

19、以 ,即 ,解得 ;3A2184a3a取 中点 ,连结 ,因为 ,则 ;1FAEFA所以 平面 ,EF1BC所以四棱锥 的体积为 .111 1361833EBCBCVSEFBEF矩 形【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.18.已知 是各项均为正数的等比数列, .na132,16a(1)求 的通项公式;(2)设 ,求数列 的前 n 项和.2lognnbab【答案】 (1) ;(2 ) .12nS【解析】【分析】(1)本题首先可以根据数列 是等比数列将 转化为 , 转化为 ,再然后将其带入na3a21qa1q中,并根

20、据数列 是各项均为正数以及 即可通过运算得出结果;3216a (2)本题可以通过数列 的通项公式以及对数的相关性质计算出数列 的通项公式,再通过数列n nb的通项公式得知数列 是等差数列,最后通过等差数列求和公式即可得出结果。nbb【详解】(1)因为数列 是各项均为正数的等比数列, , ,na3216aa所以令数列 的公比为 , , ,nq231=q21q所以 ,解得 (舍去) 或 ,2416q2q4所以数列 是首项为 、公比为 的等比数列, 。na124nna(2)因为 ,所以 , , ,2logb1nb+2n1nb所以数列 是首项为 、公差为 的等差数列, 。n22nS本题考查数列的相关性

21、质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题。19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y 的频数分布表.的分组y0.2,)0,2)0.2,4)0.,6)0.,8)企业数 2 24 53 14 7(1)分别估计这类企业中产值增长率不低于 40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到 0.01)附: .748602【答案】(1) 增长率

22、超过 的企业比例为 ,产值负增长的企业比例为 ;(2)平均数 ;210 1050.3标准差 .1【解析】【分析】(1)本题首先可以通过题意确定 个企业中增长率超过 的企业以及产值负增长的企业的个数,然后1004通过增长率超过 的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;4(2)可通过平均值以及标准差的计算公式得出结果。【详解】(1)由题意可知,随机调查的 个企业中增长率超过 的企业有 个,10041472产值负增长的企业有 个,2所以增长率超过 的企业比例为 ,产值负增长的企业比例为 。04210 2105(2)由题意可知,平均值 ,2.4.53.40.57.3y标准差的

23、平方: 22222210.03.1.140.5370.3s ,1.965.096所以标准差 。.2.47.280.17s【点睛】本题考查平均值以及标准差的计算,主要考查平均值以及标准差的计算公式,考查学生从信息题中获取所需信息的能力,考查学生的计算能力,是简单题。20.已知 是椭圆 的两个焦点,P 为 C 上一点,O 为坐标原点12,F2:1(0)xyCab(1)若 为等边三角形,求 C 的离心率;POV(2)如果存在点 P,使得 ,且 的面积等于 16,求 b 的值和 a 的取值范围.12F12F【答案】(1) ;(2) ,a 的取值范围为 .3e4b4,)【解析】【分析】(1)先连结 ,由

24、 为等边三角形,得到 , , ;再由椭圆定义,1PF2OV1290FP2c13PFc即可求出结果;(2)先由题意得到,满足条件的点 存在,当且仅当 , ,(,)Pxy62ycyxc,根据三个式子联立,结合题中条件,即可求出结果.21xyab【详解】 (1)连结 ,由 为等边三角形可知:在 中, , ,1PF2OV12FP 1290F2Pc,3PFc于是 ,1223ac故椭圆 C 的离心率为 ;2311cea(2)由题意可知,满足条件的点 存在,当且仅当 , ,(,)Pxy126yc1yxc,21xyab即 6c22xy21ab由以及 得 ,又由知 ,故 ;22c42by216yc4b由得 ,所

25、以 ,从而 ,故 ;22()ax2cb223a42a当 , 时,存在满足条件的点 .4bP故 ,a 的取值范围为 .42,)【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.21.已知函数 .证明:()1lnfxx(1) 存在唯一的极值点;f(2) 有且仅有两个实根,且两个实根互为倒数.()=0x【答案】 (1)见详解;(2)见详解【解析】【分析】(1)先对函数 求导,根据导函数的单调性,得到存在唯一 ,使得 ,进而可得判断函数()fx 0x0()fx的单调性,即可确定其极值点个数,证明出结论成立;()fx(2)先

26、由(1)的结果,得到 , ,得到 在 内0()120fxf2()30fe()0fx(,)存在唯一实根,记作 ,再求出 ,即可结合题意,说明结论成立.xf【详解】 (1)由题意可得, 的定义域为 ,()f(0,)由 ,()ln1fxx得 ,llf x显然 单调递增;1()lnfx又 , ,()0f1ln4(2)l02f故存在唯一 ,使得 ;0x0fx又当 时, ,函数 单调递增;当 时, ,函数 单调递减;()()fx0x0()fx()fx因此, 存在唯一的极值点;()fx(2)由(1)知, ,又 ,0()12ff2()3fe所以 在 内存在唯一实根,记作 .()fx,x由 得 ,0101x又

27、,()()ln0ff 故 是方程 在 内的唯一实根;1()0fx0(,)x综上, 有且仅有两个实根,且两个实根互为倒数.=【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值、以及函数零点的问题,属于常考题型.(二)选考题:共 10 分请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分22.选修 4-4:坐标系与参数方程 在极坐标系中,O 为极点,点 在曲线 上,直线 l 过点 且与0(,)M:4sinC(4,0)A垂直,垂足为 P.M(1)当 时,求 及 l 的极坐标方程;0=30(2)当 M 在 C 上运动且 P 在线段 OM 上时,

28、求 P 点轨迹的极坐标方程 .【答案】 (1) ,l 的极坐标方程为 ;(2)02sin()64cos()2【解析】【分析】(1)先由题意,将 代入 即可求出 ;根据题意求出直线 的直角坐标方程,再化为极0=34sin0l坐标方程即可;(2)先由题意得到 P 点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.【详解】 (1)因为点 在曲线 上,0(,)M:4sinC所以 ;004sini23即 ,所以 ,(23,)tanOMk因 为 直线 l 过点 且与 垂直,(4,0A所以直线 的直角坐标方程为 ,即 ;l3(4)yx340y+因此,其极坐标方程为 ,即 l 的极坐标方程为

29、;cosinsin()26(2)设 ,则 , ,(,)PxyOPykx4APyk由题意, ,所以 ,故 ,整理得 ,OPA1OPAk214yx240xy因为 P 在线段 OM 上,M 在 C 上运动,所以 ,0,所以,P 点轨迹的极坐标方程为 ,即 .24cos4cos()2【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.23.选修 4-5:不等式选讲 已知 ()|2|().fxaxa(1 )当 时,求不等式 的解集;0f(2)若 时, ,求 的取值范围.(,1)x()xa【答案】 (1) ;(2),【解析】【分析】(1)根据 ,将原不等式化为 ,分别讨论 ,

30、, 三种情1a|1|2|(1)0xx1x2x况,即可求出结果;(2)分别讨论 和 两种情况,即可得出结果. 【详解】 (1)当 时,原不等式可化为 ;a|1|2|(1)0xx当 时,原不等式可化为 ,即 ,显然成立,x(1)(2)02此时解集为 ;(,)当 时,原不等式可化为 ,解得 ,此时解集为空集;12x()()1xx1x当 时,原不等式可化为 ,即 ,显然不成立;此时解集为空集;1202(0)综上,原不等式的解集为 ;(,)(2)当 时,因为 ,所以由 可得 ,1a (,1)x()0fx()(2)0axxa即 ,显然恒成立;所以 满足题意;()0xa当 时, ,因为 时, 显然不能成立,所以 不满1a2(),(1xf1x()0fx1a足题意;综上, 的取值范围是 .,)【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.