ImageVerifierCode 换一换
格式:PDF , 页数:17 ,大小:915.56KB ,
资源ID:65664      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-65664.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京中考数学填空题冲刺50题(含答案)PDF版)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北京中考数学填空题冲刺50题(含答案)PDF版

1、1北 京 中 考 冲 刺 填 空 题 50 题1 把 多 项 式 ax2 2ax+a分 解 因 式 的 结 果 是2 要 使 分 式 有 意 义 , 则 x应 满 足 的 条 件 是 3 已 知 一 组 数 据 3, x, 2, 3, 1, 6 的 众 数 为 3, 则 这 组 数 据 的 中 位 数为 4 若 二 次 函 数 y ax2+2x+1的 图 象 与 x轴 有 两 个 不 相 同 的 交 点 , 则 a的 取 值 范围 是 5.对 于 实 数 a, b, 定 义 运 算 “ ” 如 下 : a b=a2 ab, 例 如 , 5 3=52 5 3=10 若( x+1) ( x 2)

2、=6, 则 x的 值 为 6.设 a1,a2,a3, ,an是 一 列 正 整 数 ,其 中 a1表 示 第 一 个 数 ,a2表 示 第 二 个 数 ,依 此类 推 ,an表 示 第 n个 数 (n是 正 整 数 ),已 知 a1=1,4an=(an+1-1)2-(an-1)2,则 a2018= .7 如 图 , 圆 锥 侧 面 展 开 得 到 扇 形 , 此 扇 形 半 径 CA 6, 圆心 角 ACB 120 , 则 此 圆 锥 高 OC的 长 度 是 :8 如 图 A, D 是 O 上 两 点 , BC 是 直 径 若 D 35 ,则 OAB的 度 数 是 9 已 知 直 线 y x+

3、3 与 坐 标 轴 相 交 于 A、 B 两 点 , 动 点 P从 原 点 O出 发 , 以 每 秒 1个 单 位 长 度 的 速 度 沿 x轴 正 方 向 运 动 ,当 点 P的 运 动 时 间 是 秒 时 , PAB是 等 腰 三 角 形 210.如 图 , 点 A、 B是 双 曲 线 y= 上 的 点 , 分 别 过 点 A、 B作 x轴 和 y轴 的 垂 线段 , 若 图 中 阴 影 部 分 的 面 积 为 2, 则 两 个 空 白 矩 形 面 积 的 和 为 _11.如 图 , 在 平 面 直 角 坐 标 系 中 , OA=AB, OAB=90 , 反 比 例 函 数 y=xk( k

4、 0,x 0) 的 图 象 经 过 点 A, B两 点 , 若 点 A的 坐 标 为 ( 1, n) , 则 k的 值 为 _12.如 图 , 反 比 例 函 数 ( 0)ky xx 的 图 像 经 过 平 行 四 边 形 OABC 的 顶 点 C和 对角 线 的 交 点 E,顶 点 A在 x轴 上 .若 平 行 四 边 形 OABC 的 面 积 为 18, 则 k 的 值 为_13.如 图 ,点 A1,A2,A3在 x轴 上 ,且 OA1=A1A2=A2A3,分 别 过 点A1,A2,A3作 y轴 的 平 行 线 ,与 反 比 例 函 数 y=x8 (x0)的 图 象 分别 交 于 点 B1

5、,B2,B3,分 别 过 点 B1,B2,B3作 x轴 的 平 行 线 ,分 别与 y轴 交 于 点 C1,C2,C3,连 接 OB1,OB2,OB3,那 么 图 中 阴 影 部 分的 面 积 之 和 为 .14 二 次 函 数 y ax2+bx+c( a 0) 的 函 数 值 y 与 自 变 量 x 之 间 的 部 分 对 应 值如 下 表 :x 2 1 0 1 2 y 7 1 3 5 5 则 的 值 为 315 如 图 , 平 面 直 角 坐 标 系 中 , 已 知 直 线 ( 0)y kx k 经 过 点 P(2, 1), 点 A在 y轴 的 正 半 轴 上 , 连 接 PA, 将 线

6、段 PA绕 点 P顺 时 针 旋 转 90 至 线 段 PB, 过点 B作 直 线 MN x轴 , 垂 足 为 N, 交 直 线 y=kx(k 0)于 点 M( 点 M在 点 B的 上方 ) , 且 BN=3BM, 连 接 AB, 直 线 AB与 直 线 ( 0)y kx k 交 于 点 Q, 则 点 Q的 坐标 为 _16 如 图 , AB是 O 的 一 条 弦 , P 是 O 上 一 动 点 ( 不 与 点 A, B 重 合 ) , C, D分 别 是 AB, BP的 中 点 若 AB=4, APB=45 , 则 CD长 的 最 大 值 为 17 如 图 , ABC ADE, BAC DA

7、E 90 , AB 6, AC 8, F为 DE中 点 ,若 点 D 在 直 线 BC 上 运 动 , 连 接 CF, 则 在 点 D 运 动 过 程 中 , 线 段 CF 的 最 小 值是 18 如 图 , 矩 形 ABCD中 , AB 4, 将 矩 形 ABCD绕 点 C顺 时 针 旋 转 90 , 点 B、D 分 别 落 在 点 B , D 处 , 且 点 A, B , D 在 同 一 直 线 上 , 则 tanDAD 419 如 图 , 在 正 方 形 ABCD 和 正 方 形 GCEF 中 , 顶 点 G 在 边 CD 上 , 连 接 DE 交GF于 点 H, 若 FH 1, GH

8、2, 则 DE的 长 为 20.如 图 在 Rt ABC中 , ACB=90 , CD垂 直 AB于 点 D, ACD=4 BCD, E是斜 边 AB的 中 点 , ECD=_21.将 一 张 长 方 形 的 纸 对 折 , 如 图 , 可 得 到 一 条 折 痕 ( 图 中 虚 线 ) , 连 续 对 折 ,对 折 时 每 次 折 痕 与 上 次 的 折 痕 保 持 平 行 , 连 续 对 折 3次 后 , 可 以 得 7条 折 痕 ,连 续 对 折 5次 后 , 可 以 得 到 _条 折 痕 。22 小 明 家 的 客 厅 有 一 张 直 径 为 1.2米 , 高 0.8米 的 圆 桌 B

9、C, 在 距 地 面 2米 的A处 有 一 盏 灯 , 圆 桌 的 影 子 为 DE, 依 据 题 意 建 立 平 面 直 角 坐 标 系 , 其 中 D点 坐标 为 ( 2,0) , 则 点 E的 坐 标 是 23.如 图 , ABC是 一 张 直 角 三 角 形 彩 色 纸 , AC=15cm, BC=20cm 若 将 斜 边 上 的高 CD 分 成 n等 分 , 然 后 裁 出 ( n 1) 张 宽 度 相 等 的 长 方 形 纸 条 则 这 ( n 1)张 纸 条 的 面 积 和 是 _ cm2 524 ABC在 平 面 直 角 坐 标 系 中 的 位 置 如 图 A、 B、 C三 点

10、 在 格 点 上 ( 1) 作 出 ABC关 于 x轴 对 称 的 A1B1C1 , 并 写 出 点 C1的 坐 标 _; _;( 2) 在 y轴 上 找 点 D, 使 得 AD+BD最 小 , 作 出 点 D并 写 出 点 D的 坐 标 _ 25在 平 面 直 角 坐 标 系 xoy 中 , 点 A( -1, 2) , B( -2, 1) 将 AOB 绕 原 点 顺时 针 旋 转 90 后 再 沿 x轴 翻 折 , 得 到 DOE , 其 中 点 A的 对 应 点 为 点 D, 点 B的 对 应 点 为 点 E.则 D 点 坐 标 为 _.上 面 由 AOB 得 到 DOE 的 过程 , 可

11、 以 只 经 过 一 次 图 形 变 化 完 成 .请 你 任 写 出 一 种 只 经 过 一 次 图 形 变 化 可 由 AOB得 到 DOE 的 过 程 _.26.如 图 , 在 边 长 为 m 的 菱 形 ABCD 中 , DAB 60 , E 是 AD 上 不 同 于 A、 D两 点 的 一 动 点 , F 是 CD 上 一 动 点 , 且 AE+CF m, 则 BEF 面 积 的 最 小 值为 27 如 图 , 在 平 面 直 角 坐 标 系 中 , P的 圆 心 是 ( 3, a) ( a 3) , P 与 y 轴相 切 , 函 数 y x的 图 象 被 P截 得 的 弦 AB的

12、长 为 2 , 则 a的 值 是 628. 如 图 , 在 Rt ABC中 , ACB 90 , 将 ABC绕 顶 点 C逆 时 针 旋 转得 到 ABC, M是 BC的 中 点 , N是 AB的 中 点 , 连 接 MN, 若 BC 4, ABC 60 , 则 线 段 MN的 最 大 值 为 29.如 图 , 在 标 有 刻 度 的 直 线 l上 , 从 点 A开 始 以 AB=1为 直 径 画 半 圆 , 记 为 第一 个 半 圆 , 以 BC=2为 直 径 画 半 圆 , 记 为 第 二 个 半 圆 , 以 CD=4为 直 径 画 半 圆 ,记 为 第 三 个 半 圆 , 以 DE=8为

13、 直 径 画 半 圆 , 记 为 第 四 个 半 圆 , , 按 此 规 律 继续 画 半 圆 , 则 第 2018个 半 圆 的 面 积 为 _( 结 果 保 留 ) 30.将 一 列 有 理 数 1, 2, 3, 4, 5, 6, , 如 图 所 示 有 序 排 列 根 据图 中 的 排 列 规 律 可 知 , “ 峰 1” 中 峰 顶 的 位 置 ( C的 位 置 ) 是 有 理 数 4, 那 么 ,“ 峰 6” 中 C的 位 置 是 有 理 数 , 2019应 排 在 A, B, C, D, E中 的 位置 31.如 图 , 在 平 面 直 角 坐 标 系 中 , 点 A1的 坐 标

14、为 ( 1, 2) , 以 点 O为 圆 心 , 以OA1长 为 半 径 画 弧 , 交 直 线 y 21 x于 点 B1, 过 B1点 作 B1A2 y轴 , 交 直 线 y 2x于 点 A2, 以 点 O为 圆 心 , 以 OA2长 为 半 径 画 弧 , 交 直 线 y 21 x于 点 B2; 过 点B2作 B2A3 y轴 , 交 直 线 y 2x于 点 A3, 以 点 O为 圆 心 , 以 OA3长 为 半 径 画 弧 ,7交 直 线 y 21 x于 点 B3; 过 B3点 作 B3A4 y轴 , 交 直 线 y 2x于 点 A4, 以 点 O为圆 心 , 以 OA4长 为 半 径 画

15、 弧 , 交 直 线 y 21 x于 点 B4, 按 照 如 此 规 律 进 行 下 去 ,点 B2018的 坐 标 为 _32.如 图 , 正 方 形 ABCD的 边 长 为 6, 点 E、 F分 别 在 AB, AD上 , 若 CE 3 5,且 ECF 45 , 则 CF的 长 为 _33.如 图 , Rt ABC中 , C=90 , ABC=30 , AC=2, ABC绕 点 C顺 时 针 旋转 得 A1B1C, 当 A1落 在 AB边 上 时 , 连 接 B1B, 取 BB1的 中 点 D, 连 接 A1D, 则 A1D的 长 度 是 _34 如 图 , 将 ABC绕 点 A逆 时 针

16、 旋 转 的 到 ADE, 点 C和 点 E是 对 应 点 , 若 CAE=90 , AB=1, 则 BD=835.如 图 , AD是 ABC的 中 线 , ADC=45 , 把 ADC沿 着 直 线 AD对 折 , 点 C落 在 点 E的 位 置 如 果 BC=6, 那 么 线 段 BE的 长 度 为 _36.如 图 , 将 矩 形 ABCD的 四 个 角 向 内 翻 折 后 , 恰 好 拼 成 一 个 无 缝 隙 无 重 叠 的 四边 形 EFGH, AD=4, 且 DH=3AH, 则 边 DC的 长 是 _37.如 图 , 在 Rt ABC 中 , 90 , 10, 5ACB AC BC

17、 ,将 直 角 三 角 板 的 直 角 顶点 与 AC 边 的 中 点 P重 合 , 直 角 三 角 板 绕 着 点 P旋 转 , 两 条 直 角 边 分 别 交 AB边于 ,M N ,则 MN 的 最 小 值 是38.如 图 , 正 方 形 ABCD的 边 长 为 4 cm.动 点 ,E F 分 别 从 点 ,A C 同 时 出 发 , 以相 同 的 速 度 分 别 沿 ,AB CD 向 终 点 ,B D移 动 , 当 点 E到 达 点 B时 , 运 动 停 止 .过点 B作 直 线 EF 的 垂 线 BG , 垂 足 为 点 G , 连 接 AG, 则 AG长 的 最 小 值 为 _cm.

18、939.已 知 点 (4,0), (0, 2), ( , )A B C a a 及 点 D是 一 个 平 行 四 边 形 的 四 个 顶 点 , 则 线段 CD长 的 最 小 值 为40.如 图 ,在 平 面 直 角 坐 标 系 中 ,点 P的 坐 标 为 (0,4),直 线 y=43 x-3与 x轴 ,y轴分 别 交 于 点 A,B,点 M是 直 线 AB上 的 一 个 动 点 ,则 PM长 的 最 小 值 为 .41.如 图 , 在 Rt ABC 中 , AB BC, AB=6, BC=4 点 P 是 ABC 内 部 的 一 个 动点 , 且 满 足 PAB= PBC 则 线 段 CP 长

19、 的 最 小 值 为 42.如 图 ,在 正 方 形 ABCD 和 正 方 形 DEFG 中 ,点 G 在 CD 上 ,DE=2,将 正 方 形 DEFG绕 点 D顺 时 针 旋 转 60 ,得 到 正 方 形 DEFG,此 时 点 G在 AC 上 ,连 接 CE,则CE+CG= .43. 已 知 在 Rt ABC 中 , C=90 , AC=6, BC=3 我 们 定 义 : “ 四 个 顶 点都 在 三 角 形 边 上 的 正 方 形 是 三 角 形 的 内 接 正 方 形 ” (1)如 图 1, 四 边 形 CDEF 是 ABC 的 内 接 正 方 形 , 则 正 方 形 CDEF 的

20、边长 a1 等 于 ;(2)如 图 2, 四 边 形 DGHI 是 ( 1) 中 EDA 的 内 接 正 方 形 , 那 么 第 2 个 正方 形 DGHI 的 边 长 记 为 a2; 继 续 在 图2 中 的 HGA 中 按 上 述 方 法 作 第3 个 内 接 正 方 形 , 依 此 类 推 , 则第 n 个 内 接 正 方 形 的 边 长an= ( n 为 正 整 数 )1044 画 图 、 测 量 、 填 空画 一 个 半 径 为 2cm的 圆 , 画 出 角 度 分 别 为 30 、 45 、 60 、 90 、 120 的圆 心 角 , 测 量 不 同 圆 心 角 所 对 弦 的

21、长 度 , 并 填 入 下 面 的 表 格 中 ( 数 据 保 留一 位 小 数 )半 径 圆 心 角 的 度 数 圆 心 角 所 对 的 弦 长 ( cm)2cm 30456090120依 据 表 格 中 的 数 据 , 当 圆 心 角 小 于 平 角 时 , 圆 心 角 与 它 所 对 弦 长 之 间 的 变 化 规律 是 45 已 知 正 方 形 ABCD.求 作 : 正 方 形 ABCD的 外 接 圆 .作 法 : 如 图 ,( 1) 分 别 连 接 AC, BD, 交 于 点 O ;( 2) 以 点 O为 圆 心 , OA长 为 半 径 作 O. O即 为 所 求 作 的 圆 .请

22、回 答 : 该 作 图 的 依 据 是 _.46 阅 读 下 面 材 料 :在 数 学 课 上 , 老 师 提 出 如 下 问 题 :尺 规 作 图 : 作 Rt ABC, 使 其 斜 边 AB c, 一 条 直 角 边 BC a已 知 线 段 a, c如 图 11小 芸 的 作 法 如 下 : 取 AB c, 作 AB的 垂 直 平 分 线 交 AB于 点 O; 以 点 O为 圆 心 , OB长 为 半 径 画 圆 ; 以 点 B为 圆 心 , a长 为 半 径 画 弧 , 与 O交 于 点 C; 连 接 BC, AC则 Rt ABC即 为 所 求 老 师 说 : “ 小 芸 的 作 法 正

23、 确 ”请 回 答 : 小 芸 的 作 法 中 判 断 ACB是 直 角 的 依 据 是 47. 阅 读 下 面 材 料 :在 数 学 课 上 , 老 师 提 出 利 用 尺 规 作 图 完 成 下 面 问 题 :小 明 的 作 法 如 下 :请 回 答 : 该 尺 规 作 图 的 依 据 是 _.已 知 : ABC.求 作 : ABC 的 内 切 圆 .如 图 ,(1)作 ABC, ACB 的 平 分 线 BE 和 CF, 两 线 相 交 于 点 O;(2)过 点 O 作 OD BC, 垂 足 为 点 D;(3)点 O 为 圆 心 , OD 长 为 半 径 作 O.所 以 , O 即 为 所

24、 求 作 的 圆 .1248.下 面 是 “经 过 已 知 直 线 外 一 点 作 这 条 直 线 的 垂 线 ”的 尺 规 作 图 过 程 。请 回 答 : 该 作 图 的 依 据 是 。49.下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程已知:线段AB求作:以AB为斜边的一个等腰直角三角形ABC作法:如图,(1)分别以点A和点B为圆心,大于12 AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA的长为半径作圆,交直线PQ于点C;(4)连接AC,BC则ABC即为所求作的三角形请回答:在 上 面 的 作 图 过 程 中 , ABC 是

25、直 角 三 角 形 的 依 据 是 _; ABC 是 等 腰 三 角 形 的 依 据 是 _13 50.( 1) 已 知 : 在 四 边 形 ABCD 中 , ABC= ADC=90,M、 N 分 别 是 CD 和 BC 上 的 点 求 作 : 点 M、 N, 使 AMN 的 周 长 最 小 作 法 : 如 图 ,( 1) 延 长 AD, 在 AD 的 延 长 线 上 截 取 DA=DA;( 2) 延 长 AB, 在 AB 的 延 长 线 上 截 取 B A=BA;( 3) 连 接 AA, 分 别 交 CD、 BC 于 点 M、 N则 点 M、 N 即 为 所 求 作 的 点 请 回 答 :

26、这 种 作 法 的 依 据 是 _( 2) .阅 读 下 列 材 料 :数 学 课 上 老 师 布 置 一 道 作 图 题 :小 东 的 作 法 如 下 :老 师 说 : “ 小 东 的 作 法 是 正 确 的 .”请 回 答 : 小 东 的 作 图 依 据 是 .14( 3) “直 角 ”在 初 中 几 何 学 习 中 无 处 不 在 课 堂 上 李 老 师 提 出 一 个 问 题 : 如 图 , 已 知 AOB 判 断 AOB 是否 为 直 角 ( 仅 限 用 直 尺 和 圆 规 ) 李 老 师 说 小 丽 的 作 法 正 确 , 请 你 写 出 她 作 图 的 依 据 : _( 4) .

27、 数 学 课 上 , 老 师 提 出 如 下 问 题 : ABC 是 O 的 内 接 三 角 形 , OD BC 于 点D.请 借 助 直 尺 , 画 出 ABC 中 BAC 的 平 分 线 .晓 龙 同 学 的 画 图 步 骤 如 下 :( 1) 延 长 OD 交 BC 于 点 M;( 2) 连 接 AM 交 BC 于 点 N.所 以 线 段 AN 为 所 求 ABC 中 BAC 的 平 分 线 .请 回 答 : 晓 龙 同 学 画 图 的 依 据 是 ._小 丽 的 方 法如 图 , 在 OA、 OB 上 分 别取 点 C, D, 以 点 C 为 圆 心 , CD长 为 半 径 画 弧 ,

28、 交 OB 的 反 向 延长 线 于 点 E 若 OE=OD,则 AOB=9015答 案 :1.a( x 1) 2 2.x 1 3. 2 4. a 1且 a 0 5.1 6.40357.4 8.55 9. 或 9 _10._8_11. _12._6 13.14, 15. (7, 72 ) 16.2 2 17.4 18. .19. 3 10 .20._54 _21.63_ 22.(3.68,0) 23._24.( 3, 2) ( 0, 2) 25(2, -1) , 将 AOB沿 直 线 y=x翻 折 得 到 DOE26. 27. 2 +3 28.6 29: 24035 30: 29; C31(

29、22018, 22017) 322 10来 源 :Z33._ 34. 35._3|xx|k.Com36._ 32 37. .2 5 38. 10 239. .3 2 40. 41.2 42. 43.(1)2(2) 1nn3244解 : 通 过 画 图 测 量 可 知 : 一 个 半 径 为 2cm的 圆 , 圆 心 角 为 30 、 45 、60 、 90 、 120 所 对 弦 的 长 度 分 别 为 1cm, 1.5cm, 2cm, 2.8cm, 3.5cm依 据 表 格 中 的 数 据 , 当 圆 心 角 小 于 平 角 时 , 圆 心 角 与 它 所 对 弦 长 之 间 的 变 化 规

30、律 是 : 当 圆 心 角 增 大 时 , 弦 的 长 度 也 增 大 故 答 案 为 1, 1.5, 2, 2.8, 3.5, 当 圆 心 角 增 大 时 , 弦 的 长 度 也 增 大45. 正 方 形 的 对 角 线 相 等 且 互 相 平 分 , 圆 的 定 义46 解 : 小 芸 的 作 法 中 判 断 ACB是 直 角 的 依 据 是 直 径 所 对 的 圆 周 角 为 直 角 故 答 案 为 直 径 所 对 的 圆 周 角 为 直 角 47.答 案 : 到 角 两 边 距 离 相 等 的 点 在 角 平 分 上 ; 两 点 确 定 一 条 直 线 ; 角 平 分 上 的点 到 角

31、 两 边 的 距 离 相 等 ; 圆 的 定 义 ; 经 过 半 径 的 外 端 , 并 且 垂 直 于 这 条 半 径 的直 线 是 圆 的 切 线 .48.答 案 : ( 1) 到 线 段 两 端 距 离 相 等 的 点 在 线 段 的 垂 直 平 分 线 上 ( A、 B 都 在 PQ 的 垂 直平 分 线 上 ) ; ( 2) 两 点 确 定 一 条 直 线 ( AB 垂 直 PQ) ( 其 他 正 确 依 据 也 可 以 )1649. 直 径 所 对 的 圆 周 角 为 直 角 线 段 垂 直 平 分 线 上 的 点 与 这 条 线 段 两 个 端 点 的 距 离 相 等50. (

32、1) 线 段 垂 直 平 分 线 的 定 义 ( 或 线 段 垂 直 平 分 线 的 判 定 , 或 轴 对 称 的 性 质 即 对 称点 的 连 线 段 被 对 称 轴 垂 直 平 分 ) 线 段 垂 直 平 分 线 上 的 点 到 线 段 两 个 端 点 的 距 离 相 等 ( 线 段 垂 直 平 分 线 的 性 质 ) ; 两 点 之 间 线 段 最 短( 2) 三 边 分 别 相 等 的 两 个 三 角 形 全 等 ; 全 等 三 角 形 的 对 应 角 相 等 ; 两 点 确 定 一 条 直 线 ;内 错 角 相 等 两 直 线 平 行 .( 3) .等 腰 三 角 形 的 三 线 合 一( 4) 垂 径 定 理 , 等 弧 所 对 的 圆 周 角 相 等 17