1、八年级数学期末模拟(一)试题卷 第 1 页 共 7 页2018 学年第二学期八年级数学学业水平期末模拟检测(一)八年级试题卷亲爱的考生们,欢迎参加本次考试,考试时请认真审题,细心答题,同时请注意以下几点:1本场考试科目为数学,试卷共 6 页,分选择题部分和非选择题部分;2本试卷分三大题,24 小题,测试内容为八上数学全册3. 所有答案请写在答题卷上,在试卷上作答无效!第 I 卷(选择题部分)一、单选题(本大题共 10 小题,每小题 3 分,共 30 分)1若代数式 有意义,则 x 的取值范围是( )5xA B C D055x5x2下列一元二次方程中,没有实数根的是( )A B C D2x02x
2、02x012x3下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )A B C D4某篮球队 5 名主力队员的身高(单位:cm)分别是 174,179,180,174,178,则这 5 名队员身高的中位数是( )A174 B177 C180 D1785一个多边形的每一个外角都等于 36,则这个多边形的边数 n 等于( )A8 B10 C12 D146若反比例函数 的图象经过点(2,3) ,则此函数图象也经过的点是( )0kxyA (2,-3) B (2,3) C (1,6) D (1.5,-4)7如图,平行四边形 ABCD 四个内角平分线相交,如能构成四边
3、形 EFGH,则四边形 EFGH 的形状是( )A平行四边形 B矩形 C正方形 D菱形八年级数学期末模拟(一)试题卷 第 2 页 共 7 页8如图,菱形 ABCD,AB=6,A=120,点 E,F,G 分别为线段 BC,CD,BD 上的任意一点,则EG+FG 的最小值为( )A4 B C6 D3 349某商品房原价 ,经过连续两次降价后,现价 ,求平均每次降价的百2/10m元 2/108m元分率.若设平均每次降价的百分率为 x,依题意可列方程为( )A B82x 22xC D 120108 10108210如图,反比例函数 的图像经过点 A(2,-2) ,过点 作 ABy 轴,垂足为 ,在 y
4、xky A B轴的正半轴上取一点 P(0,t) ,过点 作直线 OA 的垂线 l,以直线 l 为对称轴,点 B 经轴对称变换P得到的点 在此反比例函数的图像上,则 t 的值为( ),BA B C D2512515151第 7 题图 第 8 题图 第 10 题图第 II 卷(非选择题部分)二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)11当 a3 时, a612反比例函数的图象经过点 P(2,1) ,则这个函数的图象位于第 象限.13在 ABCD 中,A = ,则C 6014菱形 ABCD 的对角线 AC,BD 相交于点 O,AC=10,BD=24,则菱形 ABCD 的周长为 八
5、年级数学期末模拟(一)试题卷 第 3 页 共 7 页15如图,在矩形 ABCD 中,点 E 在 AD 上,EC 平分BED,AB=1,EBC=45,BC 的长为 .16如图,过 x 轴正半轴上的任意一点 P 作 y 轴的平行线交反比例函数 和 的图象于xy24A,B 两点,C 是 y 轴上任意一点,则ABC 的面积为 17如图,有一块长方形区域,AD=2AB,现在其中修建两条长方形小路,每条小路的宽度均为 1 米,设 AB 边的长为 x 米,则图中空白区域的面积为 18如图,菱形 ABCD 的一个内角是 60,将它绕对角线的交点 O 顺时针旋转 90后得到菱形ABCD.旋转前后两菱形重叠部分多
6、边形的周长为 ,则菱形 ABCD 的边长为 .83第 15 题图 第 16 题图 第 17 题图 第 18 题图三、解答题(本大题共 6 小题,共 46 分)19 (6 分)(1)计算: (2)解方程:512048 0152x20 (6 分)如图,在平面直角坐标系中,ABC 各顶点的坐标分别为 A(2, 2) ,B(4, 1) ,C(4,4) 八年级数学期末模拟(一)试题卷 第 4 页 共 7 页(1)作出 ABC 关于原点 O 成中心对称的 A1B1C1. (2)作出点 A 关于 x 轴的对称点 A若把点 A向右平移 a 个单位长度后落在 A1B1C1的内部(不包括顶点和边界) ,求 a 的
7、取值范围.21 (6 分)如图:O 为平行四边形 ABCD 的对角线 AC 的中点,EF 经过点 O,且与 AB 交于 E,与 CD 交于 F. 求证:四边形 AECF 是平行四边形. 22 (8 分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5 名选手组成初中代表队和高中代表队参加学校决赛。两个队各选出的 5 名选手的决赛成绩如图所示.(1)根据图示填表.(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好.(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.23 (8 分)随着我市旅游业的快速发展,外来游客对住宿的需求明显增大,某宾馆拥有
8、的床位数不断增加.(1)该宾馆床位数从 2016 年底的 200 个增长到 2018 年底的 242 个,求该宾馆这两年(从 2017 年底到 209 年底)拥有的床位数的年平均增长率.八年级数学期末模拟(一)试题卷 第 5 页 共 7 页(2)根据市场表现发现每床每日收费 40 元,242 张床可全部租出,若每床每日收费提高 10 元,则租出床位减少 20 张。若想平均每天获利 11100 元,同时又减轻游客的经济负担,每张床位应定价多少元?24 (12 分)如图 1,已知直线 分别与双曲线 、 交于 P、Q 两点,且xy3xy120kOP=2OQ(1)求 k 的值(2)如图 2,若点 A
9、是双曲线 上的动点,ABx 轴,ACy 轴,分别交双曲线xy12于点 B、C,连接 BC请你探索在点 A 运动过程中,ABC 的面积是否变化?若不变,0xky请求出ABC 的面积;若改变,请说明理由. (3)如图 3,若点 D 是直线 y=3x 上的一点,请你进一步探索在点 A 运动过程中,以点A、B、C、D 为顶点的四边形能否为平行四边形?若能,求出此时点 A 的坐标;若不能,请说明理由 八年级数学期末模拟(一)试题卷 第 6 页 共 7 页2018 学年第二学期八年级数学学业水平期末模拟检测(一)八年级答案卷第 I 卷(选择题部分)一、单选题(本大题共 10 小题,每小题 3 分,共 30
10、 分)题号 1 2 3 4 5 6 7 8 9 10答案 C C C D B C B B B C第 II 卷(非选择题部分)二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)11.3 12.一、三 13.60 14.52 15. 16.3 17. 18.2 三、解答题(本大题共 6 小题,共 46 分)19.(6 分)(1) (2)5325,21xx20.(6 分)略21.(6 分)2 12x八年级数学期末模拟(一)试题卷 第 7 页 共 7 页为 平 行 四 边 形四 边 形 分 分 分中和 在 分 分为 平 行 四 边 形四 边 形 AECDFSOCAEFODB1,/21/22.(8 分)(1)85,85,80(2)初中部(3)初中代表队较稳定23.(8 分)(1)0.1(2)50 元24.(12 分)(1)k=3(2)面积不变,为 (3) (2 , )或(2,6)或( ,6 ) 877677 277 7