ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:505KB ,
资源ID:63192      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-63192.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年山东省聊城市东阿县中考数学一模试卷(含答案解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年山东省聊城市东阿县中考数学一模试卷(含答案解析)

1、2019 年山东省聊城市东阿县中考数学一模试卷一、选择题(每小题 3 分,共 30 分)1(3 分)下列计算正确的是( )Aa 3+a22a 5 B(2a 3) 24a 6C(a+b) 2a 2+b2 Da 6a2 a32(3 分)我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000 美元税收,其中 1100000000 用科学记数法表示应为( )A0.1110 8 B1.110 9 C1.110 10 D1110 83(3 分)如图所示,将矩形纸片先沿虚线 AB 按箭头方向向右对折,接着对折后的纸片沿虚线 CD 向下对折,然后剪下一个小三角形,再将纸片打开,则

2、打开后的展开图是( )A BC D4(3 分)不等式组 的解集在数轴上正确表示的是( )ABCD5(3 分)如图,将一块直角三角板的直角顶点放在直尺的一边上如果150,那么2 的度数是( )A30 B40 C50 D606(3 分)高速路上因赶时间超速而频频发生交通事故,这样给自己和他人的生命安全带来直接影响,为了解车速情况,一名执法交警在高速路上随机测试了 6 个小轿车的车速情况记录如下:车序号 1 2 3 4 5 6车速(千米/时)100 95 106 100 120 100则这 6 辆车车速的众数和中位数(单位:千米/时)分别是( )A100,95 B100,100 C102,100 D

3、100,1037(3 分)若函数 y 的图象在每一个象限内 y 的值随 x 值的增大而增大,则函数y(1+ m)x +m2+3 的图象不经过( )A第一象限 B第二象限 C第三象限 D第四象限8(3 分)下列命题中,是真命题的是( )A一元二次方程的一般形式是 ax2+bx+c0B一元二次方程 ax2+bx+c0 的根是 xC方程 x2x 的解是 x1D方程 x(x5)(x+7)0 的根有三个9(3 分)已知二次函数 yax 2+bx+c 的图象如图,其对称轴 x1,给出下列结果:b2 4ac;abc0;2 a+b0;a+b+ c0; ab+c0,则正确的结论是( )A B C D10(3 分

4、)如图,半圆 O 的直径 AB10cm ,弦 AC6 cm,AD 平分BAC,则 AD 的长为( )A cm B cm C cm D4cm二、填空题(每小题 3 分,共 24 分)11(3 分)若分式 的值为 0,则 x 的值为 12(3 分)分解因式(x1)(x3)+1 13(3 分)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是 14(3 分)如图,以点 O 为位似中心,将五边形 ABCDE 放大后得到五边形AB C DE,已知 OA10cm,OA 20cm,则五边形 ABCDE

5、 的周长与五边形AB C DE的周长的比值是 15(3 分)对于 X、Y 定义一种新运算“*”:X*YaX+bY,其中 a、b 为常数,等式右边是通常的加法和乘法的运算已知:3*515,4*728,那么 2*3 16(3 分)如图,是反比例函数 y 和 y (k 1k 2)在第一象限的图象,直线ABx 轴,并分别交两条曲线于 A、B 两点,若 SAOB 2,则 k2k 1 的值为 17(3 分)如图,AB 是 O 的直径,点 D、T 是圆上的两点,且 AT 平分BAD,过点T 作 AD 延长线的垂线 PQ,垂足为 C若 O 的半径为 2,TC ,则图中阴影部分的面积是 18(3 分)在平面直角

6、坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1 步向右走 1 个单位长度,第 2 步向右走 2 个单位长度,第 3 步向上走 1 个单位长度,第 4 步向右走 1 个单位长度,依此类推,第 n 步的走法是:当 n 能被 3 整除时,则向上走 1 个单位长度;当 n 被 3 除,余数为 1 时,则向右走 1 个单位长度;当 n 被 3 除,余数为 2 时,则向右走 2 个单位长度,当走完第 8 步时,棋子所处位置的坐标是 ;当走完第 2018 步时,棋子所处位置的坐标是 三、解答题(共 66 分)19(6 分)计算:( ) 1 2cos30 + +(2) 020(6 分)如图,已知A

7、BC90,分别以 AB 和 BC 为边向外作等边ABD 和等边BCE,连接 AE,CD 求证:AECD21(8 分)在结束了 380 课时初中阶段数学内容的教学后,唐老师计划安排 60 课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图 1图 3),请根据图表提供的信息,回答下列问题:(1)图 1 中“统计与概率”所在扇形的圆心角为 度;(2)图 2、3 中的 a ,b ;(3)在 60 课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?22(10 分)某校的教室 A 位于工地 O 的正西方向,且 OA200m,一台拖拉机从 O 点出发,以每秒 5m 的速度沿北偏西 53的

8、方向行驶,设拖拉机的噪声污染半径为130m,则教室 A 是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室 A 受噪声污染的时间有几秒(参考数据:sin53 0.80,sin37 0.60,tan37 0.75)23(10 分)如图,在ABC 中,BABC ,以 AB 为直径的O 分别交 AC,BC 于点D,E, BC 的延长线与O 的切线 AF 交于点 F(1)求证:ABC2CAF;(2)若 AC2 ,sin CAF ,求 BE 的长24(12 分)某网站店主购进 A、B 两种型号的装饰链,其中 A 型装饰链的进货单价比 B型装饰链的进货单价多 20 元,花 500 元购进 A

9、 型装饰链的数量比花 400 元购进 B 型装饰链的数量相等销售中发现 A 型装饰链的每月销售量 y1(个)与销售单价 x(元)之间满足的函数关系式为 y1x+200;B 型装饰链的每月销售量 y2(个)与销售单价x(元)满足的关系式为 y2x +140(1)求 A、B 两种型号装饰链的进货单价(2)已知每个 A 型装饰链的销售单价比 B 型装饰链的销售单价高 20 元求 A、B 两种型号装饰链的销售单价各为多少元时,每月销售这两种装饰链的总利润最大,最大总利润是多少?25(14 分)如图甲,直线 yx+3 与 x 轴、y 轴分别交于点 B、点 C,经过 B、C 两点的抛物线 yx 2+bx+

10、c 与 x 轴的另一个交点为 A,顶点为 P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点 M,使以 C,P,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点 M 的坐标;若不存在,请说明理由;(3)当 0x3 时,在抛物线上求一点 E,使CBE 的面积有最大值(图乙、丙供画图探究)2019 年山东省聊城市东阿县中考数学一模试卷参考答案与试题解析一、选择题(每小题 3 分,共 30 分)1(3 分)下列计算正确的是( )Aa 3+a22a 5 B(2a 3) 24a 6C(a+b) 2a 2+b2 Da 6a2 a3【分析】根据合并同类项法则;积的乘方,等于把积

11、的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解【解答】解:A、a 3 和 a2 不是同类项不能合并,故本选项错误;B、(2a 3) 24a 6,正确;C、应为(a+b) 2a 2+b2+2ab,故本选项错误;D、应为 a6a2a 4,故本选项错误故选:B【点评】本题主要考查了同底数幂的除法,积的乘方,合并同类项,以及完全平方公式,是中学阶段的基础题目2(3 分)我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000 美元税收,其中 1100000000 用科学记数法表示应为( )A0.1110

12、 8 B1.110 9 C1.110 10 D1110 8【分析】科学记数法的表示形式为 a10n 的形式,其中 1|a| 10,n 为整数确定 n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:1100000000 用科学记数法表示应为 1.1109,故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a| 10 ,n 为整数,表示时关键要正确确定 a 的值以及 n 的值3(3 分)如图所示,将矩形纸片先沿虚线 AB 按箭头方向向右对折

13、,接着对折后的纸片沿虚线 CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A BC D【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解【解答】解:第三个图形是三角形,将第三个图形展开,可得 ,即可排除答案 A,再展开可知两个短边正对着,选择答案 D,排除 B 与 C故选:D【点评】本题主要考查学生的动手能力及空间想象能力对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现4(3 分)不等式组 的解集在数轴上正确表示的是( )ABCD【分析】分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来,找

14、出符合条件的选项即可【解答】解: ,由得, x2,由得, x3,在数轴上表示为:故选:D【点评】本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别5(3 分)如图,将一块直角三角板的直角顶点放在直尺的一边上如果150,那么2 的度数是( )A30 B40 C50 D60【分析】由两直线平行,同位角相等,可求得3 的度数,然后求得2 的度数【解答】解:如图,150,3150,2905040故选:B【点评】此题考查了平行线的性质注意两直线平行,同位角相等定理的应用是解此题的关键6(3 分)高速路上因赶时间超速而频频发生交通事故,这样给自己和他人的生命安

15、全带来直接影响,为了解车速情况,一名执法交警在高速路上随机测试了 6 个小轿车的车速情况记录如下:车序号 1 2 3 4 5 6车速(千米/时)100 95 106 100 120 100则这 6 辆车车速的众数和中位数(单位:千米/时)分别是( )A100,95 B100,100 C102,100 D100,103【分析】根据众数和中位数的概念求解【解答】解:这组数据按照从小到大的顺序排列为:95,100,100,100,106,120,则众数为:100,中位数为:100故选:B【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的

16、顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数7(3 分)若函数 y 的图象在每一个象限内 y 的值随 x 值的增大而增大,则函数y(1+ m)x +m2+3 的图象不经过( )A第一象限 B第二象限 C第三象限 D第四象限【分析】先根据反比例函 y 的图象在每一个象限内,y 随 x 的增大而增大得出关于 m 的不等式,求出 m 的取值范围然后推知函数 y(1+m)x+m 2+3 的图象所经过的象限【解答】解:反比例函数 y 的图象在每一个象限内 y 的值随 x 值的增大而增大,m+2 0,m21+m

17、 0,m 2+37,函数 y(1+m)x+ m2+3 的图象经过第一、二、四象限,即不经过第三象限故选:C【点评】考查了反比例函数的性质,一次函数的性质,反比例函数的图象,难度不大,熟悉函数图象与系数的关系即可解题8(3 分)下列命题中,是真命题的是( )A一元二次方程的一般形式是 ax2+bx+c0B一元二次方程 ax2+bx+c0 的根是 xC方程 x2x 的解是 x1D方程 x(x5)(x+7)0 的根有三个【分析】根据一元二次方程的解的定义、一般形式等知识分别判断后即可确定正确的选项【解答】解:A、一元二次方程的一般形式为 ax2+bx+c0 (a0),故错误;B、一元二次方程 ax2

18、+bx+c0(a0)的根是 x ,故错误;C、方程 x2x 的解是 x1 或 x0,故错误;D、方程 x(x5)(x+7)0 的根有三个,正确;故选:D【点评】本题考查了一元二次方程的解的定义、一元二次方程的一般形式等知识,属于一元二次方程的基础知识,难度较小9(3 分)已知二次函数 yax 2+bx+c 的图象如图,其对称轴 x1,给出下列结果:b2 4ac;abc0;2 a+b0;a+b+ c0; ab+c0,则正确的结论是( )A B C D【分析】根据抛物线与 x 轴的交点情况,抛物线的开口方向,对称轴及与 y 轴的交点,当 x1 时的函数值,逐一判断【解答】解:抛物线与 x 轴有两个

19、交点,b 24ac0,即 b24ac,故正确;抛物线对称轴为 x 0,与 y 轴交于负半轴, ab0,c0,abc0,故错误;抛物线对称轴为 x 1,2ab0,故错误;当 x1 时,y 0,即 a+b+c0,故正确;当 x1 时,y 0,即 ab+c 0,故 正确;正确的是故选:D【点评】本题考查了抛物线与二次函数系数之间的关系关键是会利用对称轴的值求2a 与 b 的关系,对称轴与开口方向确定增减性,以及二次函数与方程之间的转换10(3 分)如图,半圆 O 的直径 AB10cm ,弦 AC6 cm,AD 平分BAC,则 AD 的长为( )A cm B cm C cm D4cm【分析】连接 OD

20、,OC,作 DEAB 于 E,OF AC 于 F,运用圆周角定理,可证得DOB OAC ,即证AOFOED,所以 OEAF3cm ,根据勾股定理,得DE4cm ,在直角三角形 ADE 中,根据勾股定理,可求 AD 的长【解答】解:连接 OD,OC,作 DEAB 于 E,OF AC 于 F,CADBAD(角平分线的性质), ,DOB OAC 2BAD,AOFODE,OEAF AC3(cm),在 Rt DOE 中,DE 4(cm),在 Rt ADE 中,AD 4 (cm)故选:A【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和

21、勾股定理二、填空题(每小题 3 分,共 24 分)11(3 分)若分式 的值为 0,则 x 的值为 2 【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案【解答】解:由题意,得x240 且 x20,解得 x2,故答案为:2【点评】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为 0;(2)分母不为 0这两个条件缺一不可12(3 分)分解因式(x1)(x3)+1 (x 2) 2 【分析】先根据多项式乘以多项式法则算乘法,合并同类项,最后根据完全平方公式分解即可【解答】解:(x1)(x 3)+1x 23xx+3+1x 24x+4(x2) 2,故答案为:

22、(x2) 2【点评】本题考查了多项式乘以多项式法则,合并同类项,完全平方公式的应用,能选择适当的方法分解因式时解此题的关键,注意:分解因式的方法有:提取公因式法,公式法,因式分解法等13(3 分)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【解答】解:画树状图得:共有 4 种等可能的结果,两次都摸到黑球的只有 1 种情况,两次都摸到黑球的概率是

23、故答案为: 【点评】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验14(3 分)如图,以点 O 为位似中心,将五边形 ABCDE 放大后得到五边形AB C DE,已知 OA10cm,OA 20cm,则五边形 ABCDE 的周长与五边形AB C DE的周长的比值是 1:2 【分析】由五边形 ABCDE 与五边形 ABC DE位似,可得五边形 ABCDE五边形 AB CDE,又由 OA10cm,OA 20cm,即可求得其相似比,根据相似多边

24、形的周长的比等于其相似比,即可求得答案【解答】解:五边形 ABCDE 与五边形 ABC DE位似,OA10cm,OA20cm ,五边形 ABCDE五边形 ABC DE,且相似比为:OA:OA10:201:2,五边形 ABCDE 的周长与五边形 ABC DE的周长的比为:OA:OA1:2故答案为:1:2【点评】此题考查了多边形位似的知识注意位似是相似的特殊形式与相似多边形的周长的比等于其相似比知识的应用15(3 分)对于 X、Y 定义一种新运算“*”:X*YaX+bY,其中 a、b 为常数,等式右边是通常的加法和乘法的运算已知:3*515,4*728,那么 2*3 2 【分析】本题是一种新定义运

25、算题目首先要根据运算的新规律,得出3a+5b154a+7b28,( )即可得出答案【解答】解:X*YaX+bY,3*515,4*728,3a+5b15 4a+7b28 ,a+2b13 ,2a+3b2,而 2*32a+3b2【点评】本题考查有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力认真审题,准确的列出式子是解题的关键16(3 分)如图,是反比例函数 y 和 y (k 1k 2)在第一象限的图象,直线AB x 轴,并分别交两条曲线于 A、B 两点,若 SAOB 2,则 k2k 1 的值为 4 【分析】设 A(a,b),B(c,d),代入双曲线得到 k1ab,k 2cd

26、 ,根据三角形的面积公式求出 cdab4,即可得出答案【解答】解:设 A(a,b),B(c,d),代入得:k 1ab,k 2cd ,S AOB 2, cd ab2,cdab4,k 2k 14,故答案为:4【点评】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出 cdab4 是解此题的关键17(3 分)如图,AB 是 O 的直径,点 D、T 是圆上的两点,且 AT 平分BAD,过点T 作 AD 延长线的垂线 PQ,垂足为 C若 O 的半径为 2,TC ,则图中阴影部分的面积是 【分析】连接 OT、OD、过 O 作 OMAD 于 M,得

27、到矩形 OMCT,求出 OM,求出OAM,求出AOT ,求出 OTAC,得出 PC 是圆的切线,得出等边三角形 AOD,求出AOD ,求出 DOT,求出DTCCAT30,求出 DC,求出梯形 OTCD 的面积和扇形 OTD 的面积相减即可求出答案【解答】解:连接 OT、OD、DT,过 O 作 OMAD 于 M,OAOT ,AT 平分BAC,OTAOAT,BAT CAT ,OTACAT,OTAC,PCAC,OTPC,OT 为半径,PC 是O 的切线,OM AC,AC PC,OTPC,OMCMCT OTC90,四边形 OMCT 是矩形,OM TC ,OA2,sinOAM ,OAM60,AOM30A

28、COT,AOT180OAM 120,OAM60,OAOD,OAD 是等边三角形,AOD 60 ,TOD 120 6060,PC 切O 于 T,DTC CAT BAC30,tan30 ,DC1,阴影部分的面积是 S 梯形 OTCDS 扇形 OTD (2+1) 故答案为: 【点评】本题考查了切线的性质和判定,解直角三角形,矩形的性质和判定,勾股定理,扇形的面积,梯形的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,本题综合性比较强,有一定的难度18(3 分)在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1 步向右走 1 个单位长度,第 2 步向右走 2 个单位长度

29、,第 3 步向上走 1 个单位长度,第 4 步向右走 1 个单位长度,依此类推,第 n 步的走法是:当 n 能被 3 整除时,则向上走 1 个单位长度;当 n 被 3 除,余数为 1 时,则向右走 1 个单位长度;当 n 被 3 除,余数为 2 时,则向右走 2 个单位长度,当走完第 8 步时,棋子所处位置的坐标是 (9,2) ;当走完第 2018 步时,棋子所处位置的坐标是 (2019,672) 【分析】设走完第 n 步,棋子的坐标用 An 来表示列出部分 A 点坐标,发现规律“A3n(3n,n),A 3n+1(3n+1,n),A 3n+2(3n+3,n)”,根据该规律即可解决问题【解答】解

30、:设走完第 n 步,棋子的坐标用 An 来表示观察,发现规律:A 0(0,0),A 1(1,0),A 2(3,0),A 3(3,1),A 4(4,1),A5(6,1),A 6(6,2),A 3n(3n,n),A 3n+1(3n+1,n),A 3n+2(3n+3,n)823+2,A 8(9,2)20186723+2,A 2018(2019,672)故答案为:(9,2),(2019,672)【点评】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 3n(3n,n),A3n+1( 3n+1,n),A 3n+2(3n+3,n)”本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列

31、出部分 A 点的坐标,根据坐标的变化发现规律是关键三、解答题(共 66 分)19(6 分)计算:( ) 1 2cos30 + +(2) 0【分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案【解答】解:原式22 +3 +12 +3 +13+2 【点评】此题主要考查了实数运算,正确化简各数是解题关键20(6 分)如图,已知ABC90,分别以 AB 和 BC 为边向外作等边ABD 和等边BCE,连接 AE,CD 求证:AECD【分析】根据等边三角形的性质得到ABDCBE60,BABD,BCBE,根据角的和差得到CBDABE,推出CBDEBA(SAS),根据全等三角形

32、的性质即可得到结论【解答】证明:ABD 和BCE 为等边三角形,ABDCBE60,BABD,BCBE,ABD+ABCCBE+ABC,即CBDABE,在CBD 与EBA 中, ,CBDEBA(SAS),AECD【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键21(8 分)在结束了 380 课时初中阶段数学内容的教学后,唐老师计划安排 60 课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图 1图 3),请根据图表提供的信息,回答下列问题:(1)图 1 中“统计与概率”所在扇形的圆心角为 36 度;(2)图 2、3 中的 a 60

33、,b 14 ;(3)在 60 课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?【分析】(1)先计算出“统计与概率”所占的百分比,再乘以 360即可;(2)根据数与代数所占的百分比,求得数与代数的课时总数,再减去数与式和函数,即为 a 的值,再用 a 的值减去图 3 中 A,B,C ,E 的值,即为 b 的值;(3)用 60 乘以 45%即可【解答】解:(1)(145%5% 40%)36036;(2)38045%674460 ;60181312314;(3)依题意,得 45%60 27,答:唐老师应安排 27 课时复习“数与代数”内容故答案为:36,60,14【点评】本题是一道统计题,

34、考查了条形统计图、扇形统计图和统计表,是基础知识要熟练掌握22(10 分)某校的教室 A 位于工地 O 的正西方向,且 OA200m,一台拖拉机从 O 点出发,以每秒 5m 的速度沿北偏西 53的方向行驶,设拖拉机的噪声污染半径为130m,则教室 A 是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室 A 受噪声污染的时间有几秒(参考数据:sin53 0.80,sin37 0.60,tan37 0.75)【分析】(1)问教室 A 是否在拖拉机的噪声污染范围内,其实就是问 A 到 OM 的距离是否大于污染半径 130m,如果大于则不受影响,反正则受影响如果过 A 作 ABOM于 B

35、,那么 AB 就是所求的线段直角三角形 AOB 中, AOB 的度数容易求得,又已知了 OA 的值,那么 AB 便可求出了然后进行判断即可(2)如果设拖拉机从 C 到 D 教室受影响,那么要求教室受影响的时间,其实就是求CD 的值,直角三角形 ABC 中, AB 的值已经求得又有 AC 的值,那么 BC 的值就能求出了CD 也就能求出了,然后根据时间路程速度即可得出时间是多少【解答】解:如图,过点 A 作 ABOM 于点 B,MON53,AOM905337 度在 Rt ABO 中,ABO90,sinAOB ,ABAO sinAOB 200sin37 120(m)120m130m教室 A 在拖拉

36、机的噪声污染范围内根据题意,在 OM 上取 C,D 两点,连接 AC,AD,使 ACAD130m ,ABOM ,B 为 CD 的中点,即 BC DB,BC 50(m ),CD2BC100(m)即影响的时间为 20(s)【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决23(10 分)如图,在ABC 中,BABC ,以 AB 为直径的O 分别交 AC,BC 于点D,E, BC 的延长线与O 的切线 AF 交于点 F(1)求证:ABC2CAF;(2)若 AC2 ,sin CAF ,求 BE 的长【分析】(1)首先连接 BD,由 AB 为直径,可得ADB9

37、0,又由 AF 是O 的切线,易证得CAFABD然后由 BABC,证得:ABC2CAF ;(2)连接 AE,利用已知条件分别求出 BC,CE 的长,由 BEBC CE 计算即可【解答】(1)证明:连结 BDAB 是O 的直径,ADB90DAB+DBA 90ABAC,2ABDABC ,AD ACAF 为O 的切线,FAB 90FAC+ CAB90FACABDABC2CAF(2)解:连接 AEAEB AEC90 , , , ,CEACsinCAE2BEBCCE1028【点评】此题考查了切线的性质、三角函数以及勾股定理此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用24(12

38、 分)某网站店主购进 A、B 两种型号的装饰链,其中 A 型装饰链的进货单价比 B型装饰链的进货单价多 20 元,花 500 元购进 A 型装饰链的数量比花 400 元购进 B 型装饰链的数量相等销售中发现 A 型装饰链的每月销售量 y1(个)与销售单价 x(元)之间满足的函数关系式为 y1x+200;B 型装饰链的每月销售量 y2(个)与销售单价x(元)满足的关系式为 y2x +140(1)求 A、B 两种型号装饰链的进货单价(2)已知每个 A 型装饰链的销售单价比 B 型装饰链的销售单价高 20 元求 A、B 两种型号装饰链的销售单价各为多少元时,每月销售这两种装饰链的总利润最大,最大总利

39、润是多少?【分析】(1)设 B 型号装饰链的进货单价为 x 元,则 A 型号装饰链的进货单价为(x+20)元,根据“花 500 元购进 A 型装饰链的数量比花 400 元购进 B 型装饰链的数量相等”列分式方程求解可得;(2)设 B 型号装饰链的销售单价为 m 元,每月销售 A 型、B 型装饰链的总利润为 w 元,根据“总利润A 型装饰链的总利润+B 型装饰链的总利润”列出二次函数解析式,配方成顶点式,由二次函数性质即可得出答案【解答】解:(1)设 B 型号装饰链的进货单价为 x 元,则 A 型号装饰链的进货单价为(x+20)元,根据题意得 ,解得:x80经检验 x80 是原方程的解当 x80

40、 时,x+20 100,答:A 型号装饰链的进货单价为 100 元,B 型号装饰链的进货单价为 80 元;(2)设 B 型号装饰链的销售单价为 m 元,每月销售 A 型、B 型装饰链的总利润为 w 元,根据题意得 w(m+20 100)(m+20)+200+(m80)(m+140)2m 2+480m256002(m120) 2+320020,抛物线开口向下,当 m120 时,W 有最大值,W 最大 3200此时 m+20140答:A、B 两种型号装饰链的销售单价分别为 140 元、120 元时,每月销售这两种装饰链的总利润最大,最大总利润是 3200 元【点评】本题主要考查分式方程和二次函数的

41、实际应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并据此列出方程或函数解析式是解题的关键25(14 分)如图甲,直线 yx+3 与 x 轴、y 轴分别交于点 B、点 C,经过 B、C 两点的抛物线 yx 2+bx+c 与 x 轴的另一个交点为 A,顶点为 P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点 M,使以 C,P,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点 M 的坐标;若不存在,请说明理由;(3)当 0x3 时,在抛物线上求一点 E,使CBE 的面积有最大值(图乙、丙供画图探究)【分析】(1)由直线解析式可求得 B、C 坐标,利用待定系数法

42、可求得抛物线解析式;(2)由抛物线解析式可求得 P 点坐标及对称轴,可设出 M 点坐标,表示出 MC、MP和 PC 的长,分 MCMP 、MCPC 和 MPPC 三种情况,可分别得到关于 M 点坐标的方程,可求得 M 点的坐标;(3)过 E 作 EFx 轴,交直线 BC 于点 F,交 x 轴于点 D,可设出 E 点坐标,表示出F 点的坐标,表示出 EF 的长,进一步可表示出CBE 的面积,利用二次函数的性质可求得其取得最大值时 E 点的坐标【解答】解:(1)直线 yx +3 与 x 轴、 y 轴分别交于点 B、点 C,B(3,0),C(0,3),把 B、C 坐标代入抛物线解析式可得 ,解得 ,

43、抛物线解析式为 yx 24x+3;(2)yx 24x +3(x2) 21,抛物线对称轴为 x2,P (2,1),设 M(2,t),且 C(0,3),MC ,MP|t +1|,PC 2 ,CPM 为等腰三角形,有 MCMP、MCPC 和 MPPC 三种情况,当 MCMP 时,则有 |t +1|,解得 t ,此时 M(2, );当 MCPC 时,则有 2 ,解得 t1(与 P 点重合,舍去)或t7,此时 M(2,7);当 MPPC 时,则有| t+1| 2 ,解得 t1+2 或 t12 ,此时M(2,1+2 )或(2,12 );综上可知存在满足条件的点 M,其坐标为(2, )或( 2,7)或(2,

44、1+2 )或(2,12 );(3)如图,过 E 作 EFx 轴,交 BC 于点 F,交 x 轴于点 D,设 E(x ,x 24x+3 ),则 F( x,x+3),0x3,EFx+3(x 24x +3) x 2+3x,S CBE S EFC +SEFB EFOD+ EFBD EFOB 3(x 2+3x) (x ) 2+ ,当 x 时,CBE 的面积最大,此时 E 点坐标为( , ),即当 E 点坐标为( , )时,CBE 的面积最大【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、三角形的面积、二次函数的性质、方程思想及分类讨论思想等知识在(1)中注意待定系数法的应用,在(2)中设出 M 点的坐标,利用等腰三角形的性质得到关于 M 点坐标的方程是解题的关键,在(3)中用 E 点坐标表示出CBE 的面积是解题的关键本题考查知识点较多,综合性较强,难度适中