ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:386.50KB ,
资源ID:62530      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-62530.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年4月山东省东港区日照街道三中中考数学模拟试卷(含答案解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年4月山东省东港区日照街道三中中考数学模拟试卷(含答案解析)

1、2019 年山东省东港区日照街道三中中考数学模拟试卷(4 月份)一选择题(共 12 小题,每小题 3 分,满分 36 分)1如果一个实数的平方根与它的立方根相等,则这个数是( )A0 B正实数 C0 和 1 D12中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口 44 亿,这个数用科学记数法表示为( )A4410 8 B4.410 9 C4.410 8 D4.410 103估计 的值应在( )A3 和 4 之间 B4 和 5 之间 C5 和 6 之间 D6 和 7 之间4下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形

2、的是( )A B C D5下列各式中的变形,错误的是( )A B C D 6为了解当地气温变化情况,某研究小组记录了寒假期间连续 6 天的最高气温,结果如下(单位:):6,3,x ,2,1,3若这组数据的中位数是1,则下列结论错误的是( )A方差是 8 B极差是 9 C众数是1 D平均数是17一个圆锥的侧面展开图形是半径为 8cm,圆心角为 120的扇形,则此圆锥的底面半径为( )A cm B cm C3cm D cm8如图,直线 ab,直角三角形如图放置,DCB90,若1+B65,则2 的度数为( )A20 B25 C30 D359如图,将三角尺 ABC 的一边 AC 沿位置固定的直尺推移得

3、到DEF,下列结论不一定正确的是( )ADEABB四边形 ABED 是平行四边形CADBEDADAB10将抛物线 y x26x +21 向左平移 2 个单位后,得到新抛物线的解析式为( )Ay (x8) 2+5 By (x 4) 2+5Cy (x 8) 2+3 Dy (x4) 2+311已知二次函数 yax 2+bx+c(a0)的图象如图所示,给下以下结论:2a b0;9a+3b+c0;关于 x 的一元二次方程 ax2+bx+c+30 有两个相等实数根;8a+c0其中正确的个数是( )A2 B3 C4 D512如图,平行四边形 ABCD 的对角线 BD6cm ,若将平行四边形 ABCD 绕其对

4、称中心 O 旋转180,则点 D 在旋转过程中所经过的路径长为( )A3cm B6cm Ccm D2cm二填空题(共 5 小题,每小题 3 分,满分 15 分)13计算: +(3) 0( ) 2 14若 m、n 是方程 x2+2018x10 的两个根,则 m2n+mn2mn 15如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是 2 和 2,则图中阴影部分的面积是 16如图,在 66 正方形网格(每个小正方形的边长为 1cm)中,网格线的交点称为格点,ABC 的顶点都在格点处,则 AC 边上的高的长度为 cm17木工师傅可以用角尺测量

5、并计算出圆的半径,如图,用角尺的较短边紧靠圆 O 于点 A,并使较长边与圆 O 相切于点 C,记角尺的直角顶点为 B,量得 AB18cm,BC24cm ,则圆 O 的半径是 cm 三解答题(共 7 小题,满分 69 分)18(8 分)计算:cot30sin60 + 19(10 分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为 A,B,C,D四个等级,其中相应等级的得分依次记为 90 分,80 分,70 分,60 分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在 70 分及其以上的人数有 人;(2)补全下表中

6、空缺的三个统计量:平均数(分) 中位数(分) 众数(分)一班 77.6 80 二班 90(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论20(10 分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BCAD,斜坡 AB40 米,坡角BAD 60,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过 45时,可确保山体不滑坡,改造时保持坡脚 A 不动,从坡顶 B 沿 BC 削进到 E 处,问 BE 至少是多少米?(结果保留根号)21(10 分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品若购进甲种纪念

7、品 4 件,乙种纪念品 3 件,需要 550 元,若购进甲种纪念品 5 件,乙种纪念品 6 件,需要 800 元(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共 80 件,其中甲种纪念品的数量不少于 60 件考虑到资金周转,用于购买这 80 件纪念品的资金不能超过 7100 元,那么该商店共有几种进货方案 7(3)若销售每件甲种纪含晶可获利润 20 元,每件乙种纪念品可获利润 30 元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?22(10 分)如图,在O 中,AB 是直径,点 D 是O 上的一点,点 C 是 的中点,弦 CM

8、垂直 AB 于点 F,连接 AD,交 CF 于点 P,连接 BC,DAB30(1)求ABC 的度数;(2)若 CM4 ,求 的长度(结果保留 )23(10 分)如图,在ABC 中,ABAC ,以 AB 为直径的O 分别与 BC、AC 交于点 D、E,过点 D 作 DFAC 于点 F(1)若O 的半径为 3,CDF15,求阴影部分的面积;(2)求证:DF 是O 的切线;(3)求证:EDFDAC24(11 分)如图,在平面直角坐标系 xOy 中,已知二次函数 yax 2+2ax+c 的图象与 y 轴交于点C(0,3),与 x 轴交于 A、 B 两点,点 B 的坐标为(3,0)(1)求二次函数的解析

9、式及顶点 D 的坐标;(2)点 M 是第二象限内抛物线上的一动点,若直线 OM 把四边形 ACDB 分成面积为 1:2 的两部分,求出此时点 M 的坐标;(3)点 P 是第二象限内抛物线上的一动点,问:点 P 在何处时CPB 的面积最大?最大面积是多少?并求出此时点 P 的坐标2019 年山东省东港区日照街道三中中考数学模拟试卷(4 月份)参考答案与试题解析一选择题(共 12 小题,满分 36 分,每小题 3 分)1【分析】根据立方根和平方根的性质可知,只有 0 的立方根和它的平方根相等,解决问题【解答】解:0 的立方根和它的平方根相等都是 0;1 的立方根是 1,平方根是1,一个实数的平方根

10、与它的立方根相等,则这个数是 0故选:A【点评】此题主要考查了立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0 的立方根式 0注意一个数的立方根与原数的性质符号相同,一个正数的平方根有两个他们互为相反数2【分析】用科学记数法表示较大的数时,一般形式为 a10n,其中 1|a| 10,n 为整数,据此判断即可【解答】解:44 亿4.410 9故选:B【点评】此题主要考查了用科学记数法表示较大的数,一般形式为 a10n,其中 1|a| 10,确定 a 与 n 的值是解题的关键3【分析】估算确定出所求即可【解答】解:原式4+ ,124,1 2,即 54+ 6,故选:C【点评】此题考查

11、了估算无理数的大小,弄清估算的方法是解本题的关键4【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可【解答】解:A、B、C 都不是中心对称图形,D 是中心对称图形,故选:D【点评】本题考查的是中心对称图形的概念,如果一个图形绕某一点旋转 180后能够与自身重合,那么这个图形就叫做中心对称图形5【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案【解答】解:A、 ,故 A 正确;B、分子、分母同时乘以1,分式的值不发生变化,故 B 正确;C、分子、分母同时乘以 3,分式的值不发生变化,故 C 正确;D、 ,故 D 错误;故选:D【点评】本题考查了分

12、式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变6【分析】分别计算该组数据的平均数,众数,极差及方差后找到正确的答案即可【解答】解:根据题意可知 x1,平均数(6311+2+3)61,数据1 出现两次最多,众数为1,极差3(6)9,方差 (6+1) 2+(3+1) 2+(1+1 ) 2+(2+1) 2+(1+1) 2+(3+1) 29故选:A【点评】此题考查了方差、极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键7【分析】设圆锥的底面半径为 r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥

13、的母线长和弧长公式得到 2r ,然后解方程即可【解答】解:设圆锥的底面半径为 rcm,根据题意得 2r ,解得 r 故选:B【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得31+B,再根据两直线平行,同旁内角互补列式计算即可得解【解答】解:由三角形的外角性质可得,31+B65,ab,DCB90,2180390180659025故选:B【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键9【分析】由平移性质

14、可得 ADBE,且 ADBE ,即可知四边形 ABED 是平行四边形,再根据平行四边形性质可得 DEAB ,从而可得答案【解答】解:由平移性质可得 ADBE,且 ADBE ,四边形 ABED 是平行四边形,DEAB,故 A、B、C 均正确,故选:D【点评】本题主要考查平移的性质、平行四边形的判定与性质,熟练掌握平移的性质得出四边形是平行四边形是解题的关键10【分析】直接利用配方法将原式变形,进而利用平移规律得出答案【解答】解:y x26x +21 (x 212x )+21 (x6) 236+21 (x6) 2+3,故 y (x6 ) 2+3,向左平移 2 个单位后,得到新抛物线的解析式为:y

15、(x4) 2+3故选:D【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键11【分析】根据抛物线的对称轴为 x 1,可得出 2ab4a0,结论不正确;根据二次函数的对称性,可得出当 x3 时,yax 2+bx+c9a+3b+c0,结论正确;将二次 yax 2+bx+c 图象沿 y 轴正方向平移 3 个单位长度,可得出二次函数 yax 2+bx+c+3 的图象与x 轴只有一个交点,即关于 x 的一元二次方程 ax2+bx+c+30 有两个相等实数根,结论正确;将 x2 代入二次函数解析式中,可得出 y4a2b+c0,再结合 b2a 即可得出8a+c0,结论不正确综上即可得

16、出结论【解答】解:抛物线的对称轴为 x 1,b2a,2ab4a0,结论不正确;抛物线的对称轴为 x1,当 x1 时,yax 2+bx+c0,当 x3 时,y ax 2+bx+c9a+3b+ c0,结论 正确;二次函数 yax 2+bx+c 的图象的顶点坐标为(1,3),将二次函数 yax 2+bx+c 图象沿 y 轴正方向平移 3 个单位长度得到 yax 2+bx+c+3,且二次函数 yax 2+bx+c+3 的图象与 x 轴只有一个交点,关于 x 的一元二次方程 ax2+bx+c+30 有两个相等实数根,结论正确;当 x2 时,yax 2+bx+c4a2b+c 0,b2a,4a2(2a)+c

17、8a+c0,结论不正确综上所述:正确的结论有故选:A【点评】本题考查了抛物线与 x 轴的交点、二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键12【分析】利用平行四边形的性质得到 OBOD3,再利用旋转的性质得到点 D 在旋转过程中所经过的路径为以 O 点为圆心, OD 为半径,圆心角为 180 的弧,然后根据弧长公式计算即可【解答】解:四边形 ABCD 为平行四边形,OBOD 3 ,平行四边形 ABCD 绕其对称中心 O 旋转 180,点 D 在旋转过程中所经过的路径为以 O 点为圆心,OD 为半径,圆心角为 180 的弧,点 D 在旋转过程中所经过

18、的路径长 3 ( cm)故选:A【点评】本题考查了轨迹:点按一定规律运动所形成的图形叫这个点运动的轨迹也考查了平行四边形的性质和旋转的性质二填空题(共 5 小题,满分 15 分,每小题 3 分)13【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果【解答】解:原式4+194,故答案为:4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键14【分析】根据根与系数的关系得到 m+n2018,mn1,把 m2n+mm2mn 分解因式得到mn(m+ n1),然后利用整体代入的方法计算【解答】解:m、n 是方程 x2+2018x10 的两个根,m+ n 2018 ,mn

19、1,则原式mn(m+n1)1(20181)1(2019)2019,故答案为:2019【点评】本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c0 的两根分别为 x1 与 x2,则 x1+x2 ,x 1x2 解题时要注意这两个关系的合理应用15【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积【解答】解:设正三角形的边长为 a,则 a2 2 ,解得 a2 则图中阴影部分的面积2 22故答案是:2【点评】考查了二次根式的应用解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽16【分析】在 RtABC 中,由勾股定

20、理求得 AC 的长度,然后利用等面积法求得 AC 边上的高的长度,【解答】解:如图,在 Rt ABC 中,AB4cm,BC 4cm,由勾股定理知,AC 4 设 AC 边上的高的长度为 hcm,则 ABBC ACh,h 2 (cm)故答案是:2 【点评】考查了勾股定理,注意:勾股定理应用的前提条件是在直角三角形中17【分析】设圆的半径为 rcm,连接 OC、OA ,作 ADOC,垂足为 D,利用勾股定理,在 RtAOD 中,得到 r2(r18) 2+242,求出 r 即可【解答】解:设圆的半径为 rcm,如图,连接 OC、OA,作 ADOC,垂足为 D则 OD(r18)cm,AD BC24cm

21、,在 Rt AOD 中,r 2(r18) 2+242解得:r25即该圆的半径为 25cm故答案为:25【点评】本题考查的是切线的性质,根据切线的性质,利用图形得到直角三角形,然后用勾股定理计算求出圆的半径三解答题(共 7 小题,满分 69 分)18【分析】直接利用特殊角的三角函数值代入求出答案【解答】解:原式 【点评】此题主要考查了特殊角三角函数值,正确记忆相关数据是解题关键19【分析】(1)根据条形统计图得到参赛人数,然后根据每个级别所占比例求出成绩在 70 分以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求平均数、中位数、众数;(3)根据其成绩,作出合理的分析即可

22、【解答】解:(1)一班参赛人数为:6+12+2+525(人),两班参赛人数相同,二班成绩在 70 分以上(包括 70 分)的人数为 2584%21 人;(2)平均数:9044%+804%+7036%+6016% 77.6(分);中位数:70(分);众数:80(分)填表如下:平均数(分) 中位数(分) 众数(分)一班 77.6 80 80二班 77.6 70 90(3) 平均数相同的情况下,二班的成绩更好一些请一班的同学加强基础知识训练,争取更好的成绩故答案为:21;80,77.6,70【点评】本题考查了各种统计图之间的相互转化的知识,在解决本题时关键的地方是根据题目提供的信息得到相应的解决下一

23、题的信息,考查了学生们加工信息的能力20【分析】BEFG ,应根据三角函数值先求得斜坡的高度,再得到 AF、AG 的值,进而求解【解答】解:作 BGAD 于 G,作 EFAD 于 F,则在 RtABG 中,BAD60,AB40,所以就有 BGAB Sin6020 ,AGABCos6020,同理在 RtAEF 中,EAD45,则有 AFEFBG20 ,所以 BEFG AFAG20( 1)米故 BE 至少是 20( 1)米【点评】本题考查锐角三角函数的应用需注意构造直角三角形是常用的辅助线方法21【分析】(1)根据甲种纪念品 4 件乙种纪念品 3 件需要 550 元,甲种纪念品 5 件乙种纪念品6

24、 件需要 800 元;列出方程组,求出甲乙的单价;(2 根据甲纪念品的进货价+乙纪念品的进货价7100 元,甲纪念品数量不小于 60 件,列出不等式组或不等式,确定一个纪念品的取值范围根据取值范围得进货方案(3)根据:总利润甲种纪念品的利润+乙种纪念品的利润,得函数关系,利用一次函数的性质,得结论【解答】解:(1)设购进甲种纪念品每件需 x 元,购进乙种纪念品每件需 y 元由题意得: ,解得:答:购进甲种纪念品每件需 100 元,购进乙种纪念品每件需 50 元(2)设购进甲种纪念品 a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得 a62又 a60所以

25、 a 可取 60、61、62即有三种进货方案方案一:甲种纪念品 60 件,乙种纪念品 20 件;方案二:甲种纪念品 61 件,乙种纪念品 19 件;方案三:甲种纪念品 62 件,乙种纪念品 18 件(3)设利润为 W,则 W20a+30(80a)10a+2400所以 W 是 a 的一次函数, 100,W 随 a 的增大而减小所以当 a 最小时,W 最大此时 W1060+24001800答:若全部销售完,方案一获利最大,最大利润是 1800 元【点评】本题考查了一次函数的性质及二元一次方程组根据题意列出不等式或不等式组确定方案即是重点也是本题的难点另(3)亦可分别计算三种销货方案,得结论22【分

26、析】(1)连接 BD,根据 AB 为O 的直径,求出ADB90,得到ABD60,再根据 C 是 的中点,求出ABC 的度数;(2)连接 OC,则AOC2ABC 60,求出 CO 的长,即可求出 的长度【解答】解:(1)如图,连接 BD,AB 为O 的直径,ADB90,DAB30,ABD903060C 是 的中点,ABCDBC ABD30(2)如图,连接 OC,则AOC2ABC 60,CM直径 AB 于点 F,CF CM 2 在 RtCOF 中,CO CF 2 4, 的长度为 【点评】本题考查了圆周角定理,作出辅助线,根据同弧所对的圆周角是圆心角的一半解答23【分析】(1)连接 OE,过 O 作

27、 OMAC 于 M,求出 AE、OM 的长和AOE 的度数,分别求出AOE 和扇形 AOE 的面积,即可求出答案;(2)连接 OD,求出 ODDF,根据切线的判定求出即可;(3)连接 BE,求出FDCEBC,FDCEDF,即可求出答案【解答】(1)解:连接 OE,过 O 作 OMAC 于 M,则AMO90,DFAC,DFC90,FDC15,C1809015 75,ABAC,ABCC75,BAC180ABCC 30,OM OA ,AM OM ,OAOE ,OMAC,AE2AM3 ,BACAEO30,AOE1803030120,阴影部分的面积 SS 扇形 AOES AOE 3 ;(2)证明:连接

28、OD,ABAC,OBOD,ABCC,ABC ODB,ODB C,ACOD,DFAC,DFOD ,OD 过 O,DF 是 O 的切线;(3)证明:连接 BE,AB 为O 的直径,AEB 90,BEAC,DFAC,BEDF ,FDCEBC,EBCDAC,FDCDAC,A、B、D、E 四点共圆,DEFABC,ABCC,DECC,DFAC,EDFFDC,EDFDAC【点评】本题考查了圆内接四边形的性质、等腰三角形的性质、圆周角定理、扇形的面积计算、切线的判定等知识点,能综合运用定理进行推理是解此题的关键24【分析】(1)抛物线的解析式中只有两个待定系数,因此只需将点 B、C 的坐标代入其中求解即可(2

29、)先画出相关图示,连接 OD 后发现:S OBD :S 四边形 ACDB2:3,因此直线 OM 必须经过线段 BD 才有可能符合题干的要求;设直线 OM 与线段 BD 的交点为 E,根据题干可知:OBE、多边形 OEDCA 的面积比应该是 1:2 或 2:1,即 OBE 的面积是四边形 ACDB 面积的或 ,所以先求出四边形 ABDC 的面积,进而得到OBE 的面积后,可确定点 E 的坐标,首先求出直线 OE(即直线 OM)的解析式,联立抛物线的解析式后即可确定点 M 的坐标(注意点M 的位置)(3)此题必须先得到关于CPB 的面积函数表达式,然后根据函数的性质来求出CPB 的面积最大值以及对

30、于的点 P 坐标;通过图示可发现,CPB 的面积可由四边形 OCPB 的面积减去OCB 的面积求得,首先设出点 P 的坐标,四边形 OCPB 的面积可由OCP、OPB 的面积和得出,据此思路来解即可【解答】解:(1)由题意,得:解得: 所以,所求二次函数的解析式为:yx 22x +3,顶点 D 的坐标为(1,4)(2)连接 OD,AD,如右图;易求:S OBD 346 ,S 四边形 ACDBS ABD +SACD 34+ 329因此直线 OM 必过线段 BD,易得直线 BD 的解析式为 y2x+6;设直线 OM 与直线 BD 交于点 E,则OBE 的面积可以为 3 或 6当 S OBE 93

31、时,易得 E 点坐标(2,2),则直线 OE 的解析式为 yx,设 M 点坐标(x,x),联立抛物线的解析式有:xx 22x +3,解得:x 1 ,x 2 (舍去),M( , )当 S OBE 96 时,同理可得 M 点坐标M 点坐标为(1,4)(3)连接 OP,设 P 点的坐标为( m,n),因为点 P 在抛物线上,所以 nm 22m+3,所以 SCPB S CPO +SOPB S COB OC(m)+ OBn OCOB m+ n (nm 3) (m 2+3m) (m+ ) 2+ 因为3m0,所以当 m 时,n CPB 的面积有最大值 所以当点 P 的坐标为( , )时,CPB 的面积有最大值,且最大值为 【点评】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)题中,一定先要探究一下点 M 的位置,以免出现漏解的情况