ImageVerifierCode 换一换
格式:PPT , 页数:12 ,大小:249KB ,
资源ID:59594    下载:注册后免费下载
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-59594.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙教版八年级下数学6.3反比例函数的应用课件2)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

浙教版八年级下数学6.3反比例函数的应用课件2

1、6.3反比例函数的应用,挑战记忆 创设情境 合作探究(1) (2) 自主尝试(1)(2)(3) 超越自我(1) 反思提高,实际问题与反比例函数(2),挑战记忆:,反比例函数图象有哪些性质?,反比例函数 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.,繁忙的码头,1,2,3,合作探究,码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。 (1)轮船到达目的地后开始卸货,卸货速度(单位:吨/天)与卸货时间t(单位:天)之间的函数关系? (2)在实际

2、运送过程中,卸货速度、卸货时间可能有哪些变化情况?,合作探究,码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。 (3)由于遇到紧急情况船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物? (4)如果码头工人先以每天30吨的速度卸载两天,由于遇到紧急情况船上的货物必须在不超过4天内卸载完毕,那么平均每天至少要卸多少吨货物?,做一做,2、某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数为y,所需的天数为x.问:y与x是何种函数关系?若要求在5天内完成任务,每天至少要完成几页?,3.某蓄水池的排水管每时排水8m3,6h可将满池

3、水全部排空. (1)蓄水池的容积是多少?,解:蓄水池的容积为:86=48(m3).,(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?,答:此时所需时间t(h)将减少.,(3)写出t与Q之间的函数关系式;,解:t与Q之间的函数关系式为:,练一练,2.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空. (4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?,解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量至少为9.6m3.,(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?,解:当Q=12(

4、m3)时,t=48/12=4(h).所以最少需5h可将满池水全部排空.,(6)画出函数图象,根据图象请对问题(4)和(5)作出直观解释,并和同伴交流.,练一练,超越自我,某地上年度电价为每度0.8元,年用电量为1亿度,本年度计划将电价调整至0.550.75元之间,经测算电价调至x元,则本年度新增用电量y亿度与(x-0.4)成反比例,且当x=0.65时y=0.8. 求y与x之间的函数关系式. 若每度电成本价0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20? 收益=用电量(实际电量-成本价),反思提高 .通过本节课的学习,你有哪些收获?,利用反比例函数解决实际问题的关键:建立反比例函数模型.,祝同学们学习进步! 再见,