ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:1.10MB ,
资源ID:58175      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-58175.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学二轮复习解题思维提升专题11:立体几何 小题部分训练手册(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学二轮复习解题思维提升专题11:立体几何 小题部分训练手册(含答案)

1、专题 11 立体几何小题部分【训练目标】1、 掌握三视图与直观图之间的互换,会求常见几何体的体积和表面积;2、 掌握空间点线面的位置关系,以及位置关系的判定定理和性质定理;并能依此判断命题的真假;3、 掌握空间角即异面直线所成角,直线与平面所成角,二面角的求法;4、 掌握等体积法求点面距;5、 掌握几 何体体积的几种求法;6、 掌握利用空间向量解决立体几何问题。7、 掌握常见几何体的外接球问题。【温馨小提示】立体几何素来都是高考的一个中点,小题,大题都有,一般在 17 分到 22 分之间,对于大多数人来说,立体几何就是送分题,因为只要有良好的空间感,熟记那些判定定理和性质定理,然后熟练空间角和

2、距离的求法,特别是掌握了空间向量的方法,更觉得拿分轻松。【名校试题荟萃】1、某几何体的三视图如图所示,则它的表面积为( )A. B. C. D.【答案】A2、某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.【答案】A3、如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分 别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为( )A. B. C. D.【答案】C【解析】由题意得,该多面体为如下几何体,其中 BD,ED,CD 两两互相垂直,最长的棱长为,故选 C4、如图,在棱长为 的正方体中,给出以下结论: 直线 与 所成的角为 ; 若 是线段

3、 上的动点,则直线 与平面 所成角的正弦值的取值范围是 ; 若 是线段 上的动点,且 ,则四面体 的体积恒为 .其中,正确结论的个数是( )A. 个 B. 个 C. 个 D. 个【答案】D连接 ,设 到平面 的距离为 ,则 , 到直线 的距离为 ,则四面体 的体积,正确正确的命题是5、一个直棱柱的三视图如图所示,其中俯视图是一个顶角为 的等腰三角形,则该直三棱柱外接球的表面积为( )A. B. C. D.【答案】A6、某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件

4、的体积)( )A. B. C. D.【答案】A7、一块石材表示的几何体的三视图如图所示,将该石材切削,打磨,加工成球,则能得到的最大球的半径等于( )A.1 B.2 C.3 D.4【答案】B8、如图为某几何体的三视图,则该几何体的外接球的表面积为( )A. B. C. D.【答案】C【解析】如图所示,还原几何体的直观图是棱长为 3 的正方体中的四棱锥 ,因此该几何体的外接球的半径,该几何体的外接球的表面积为,选 C.9、九章算术商功章有题:一圆柱形谷仓 ,高 丈 尺,容纳米 斛( 丈= 尺,斛为容积单位, 斛 立方尺, ),则圆柱底面周长约为( )A. 丈 尺 B. 丈 尺 C. 丈 尺 D.

5、 丈 尺【答案】B10、已知四面体 的四个顶点都在球 的球面上,若 平面 , ,且 ,则球 的表面积为( )A. B. C. D.【答案】C【解析】 平面 , ,在四面体的基础上构造长方体如图,可知长方体的外接球与四面体的外接球相同,长方体的对角线就是外接球的直径,即, ,球 的表面积。11、如上右图是某几何体的三视图,则该几何体的内切球的表面积为( )A. B. C. D.【答案】B12、九章算术是我国古代的数学名著,书中提到一种名为 “刍甍”的五面体,如图所示,四边形是矩形,棱 , , , 和 都是边长为 的等边三角形,则这个几何体的体积是( )A. B. C. D.【答案】C 13、如图

6、,正三棱柱的各条棱长都相等, 是侧棱 的中点,则异面直线 和 所成角的大小是( )A. B. C. D.【答案 】D【解析】补一个相同的正三棱柱,如图所示,把正三棱柱补成直四棱柱,设棱长为 ,取 中点,则 ,所以 为异面直线 和 所成的角,在 中,,在 中,由余弦定理得:,所以。14、在四棱锥中,底面 是菱形, 底面 , 是棱 上一点若,则当 的面积为最小值时,直线 与平面 所成的角为( )A. B. C. D.【答案】B15、已知三棱锥 的底面是以 为斜边的等腰直角三角形, ,则三棱锥的外接球的球心到平面 的距离是( )A. B. C. D.【答案】A16、如图,在棱长为 的正方体中,给出以

7、下结论: 直线 与 所成的角为 ; 若 是线段 上的动点,则直线 与平面 所成角的正弦值的取值范围是 ; 若 是线段 上的动点,且 ,则四面体 的体积恒为 .其中,正确结论的个数是( ) A. 个 B. 个 C. 个 D. 个【答案】D【解析】 中,每条边都是 ,即为等边三角形, 与 所成角为 ,又,直线 与所成的角为 ,正确;由正方体可得平面 平面 ,当 点位于 上,且使平面 时,直线 与平面 所成角的正弦值最大为 ,当 与 重合时,连接 交平面 所得斜线最长,直线 与平面 所成角的正弦值最小等于 ,直线 与平面所成角的正弦值的取值范围是 ,正确;连接 ,设 到平面 的距离为 ,则 , 到直

8、线 的距离为 ,则四面体 的体积为 26,正确正确的命题是17、如图,在矩形 中, , ,点 为 的中点,现分别沿 将翻折,使得点 重合于 ,此时二面角的余弦值为( )A. B. C. D.【答案】B18、如图所示,在直三棱柱中, , , , 分别是 , 的中点,给出下列结论: 平面 ; ;平面 平面 ;其中正确结论的序号是_【答案】19、已知三条不重合的直线 ,两个不重合的平面 ,有下列命题:若且 ,则 ; 若且 ,则 ;若,则 ;若,则 .其中真命题的个数是_【答案】2 【解析】中 与 可能相交;对;中要求 与 为两异面直线时才成立;为面面垂直的性质定理,正确20、已知四边形 是矩形,.沿

9、 将 折起到 ,使平面 平面 , 是的中点, 是 上一点,给出下列结论:存在点 ,使得 平面 ;存在点 ,使得 平面 ;存在点 ,使得 平面 ;存在点 ,使得 平面 ;其中正确的结论是_.(写出所以正确结论的序号)【答案】21、设 是不同的直线, 是不同的平面,有以下四个命题:; ; .其中,正确的命题是_.【答案】【解析】中平行于同一平面的两平面平行是正确的;中 可能平行,相交或直线在平面内;中由面面垂直的判定定理可知结论正确;中 可能线面平行或线在面内.22、如图,在直角梯形 中, , , 分别是 的中 点,将三角形沿 折起,下列说法正确的是_.(填上所有正确的序号)不论 折至何位置(不在

10、平面 内)都有 平面 ;不论 折至何位置都有 ;不论 折至何位置(不在平面 内)都有 ;在折起过程中,一定存在某个位置,使 . 【答案】【解析】将三角形 沿 折起后几何体如图所示:为 分别是 的中点,所以不论 折至何位置(不在平面 内)都有 ,平面 所以正确;,则 ,所以正确; 与 是异面直线,所以错;当 时,因为 , 平面 , ,所以存在某个位置,使 ,所以正确;故答案为23、已知空间四边形 中, , , ,若平面 平面 ,则该几何体的外接球表面积为_.【答案】24、设 、 、 是三个不同的平面, 、 、 是三条不同的直线,则 的一个充分条件为_. , , ; , , ; , , ; , ,

11、 【答案】、【解析】中由已知条件可知 或 在 内或斜交或平行;由 可知 、 平行,由 可得 ;由面面垂直的性质可 得 成立;由 可知 、 平行或相交只有平行时才有 .25、如图,一竖立在水平对面上的圆锥形物体的母线长为 ,一只小虫从圆锥的底面圆上的点 出发,绕圆锥表面爬行一周后回到点 处,则该小 虫爬行的最短路程为 ,则圆锥底面圆的半径等于( )A. B. C. D.【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为 ,由余弦定理可得,设底面圆的半径为 ,则有, 故 项正确26、已知空间 个球,它们的半径均为 ,每个球都与其他三个球外切,另有一个小球与这 个球都外切,

12、则这个小球的半径( )A. B. C. D.【答案】A【解析】由题意可知,小球球心 为正四面体的中心,到顶点的距离为 ,从而所求小球的半径 . 故选 . 27、 三棱锥 中, 底面 , ,点 分别是 的中点,则点 到平面 的距离为_.【答案】【解析】如图,以 所在直线为 轴, 所在直线 轴,建立空间直 角坐标系,则, ,设平面 的一个法向量,则取 ,则平面 的一个法向量,则点 到平面 的距离为28、如图,长方体的底面是边长为 1 的正方形,高为 2,则异面直线 与 的夹角的余弦值是_【答案】【解析】29、如图,在三棱柱中, 是正方形 的中心, , 平面 , ,则直线 与平面 所成角的正弦值为_.【答案】【解析】如图建立空间直角坐标系,由 ,得,则 , , , , ,设 ,则,由 ,可得:, ,设平面 的一个法向量为 ,则,取,则,故所求正弦值为 .30、棱长为 1 的正方体中, 为 的中点,则平面 与平面 所成二面角的余弦值为_.【答案】设平面 的一个法向量为 ,则.令 ,则 .又平面 的一个法向量为,所以.