ImageVerifierCode 换一换
格式:PPTX , 页数:27 ,大小:4.13MB ,
资源ID:57758      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-57758.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学必修一课件:3.2.1 几类不同增长的函数模型)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学必修一课件:3.2.1 几类不同增长的函数模型

1、3.2.1 几类不同增长的函数模型,第三章 3.2 函数模型及其应用,学习目标 1.尝试将实际问题转化为函数模型. 2.了解指数函数、对数函数及幂函数等函数模型的增长差异. 3.会根据函数的增长差异选择函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数模型,自由落体速度公式vgt是一种函数模型.类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?,答案,答案 函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选择函数(假说)来拟合,这个函数即为函数模型.函数模型通常用来解

2、释已有数据和预测.,梳理,一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.,知识点二 三种常见函数模型的增长差异,比较三种函数模型的性质,填写下表.,增函数,快于,增函数,增函数,快于,axxnlogax,题型探究,例1 (1)下列函数中,随x的增大,增长速度最快的是 A.y50x B.yx50 C.y50x D.ylog50x(xN*),类型一 几类函数模型的增长差异,答案,解析,解析 四个函数中,增长速度由慢到快依次是ylog50x,y50

3、x,yx50,y50x.,解析 在同一平面直角坐标系内作出y12x,y2x2的图象(图略). 易知在区间(0,)上,当x(0,2)时,2xx2, 即此时y0;当x(2,4)时,2xx2,即y0; 当x(4,)时,2xx2,即y0;当x1时,y2110. 据此可知只有选项A中的图象符合条件.,(2)函数y2xx2的大致图象为,答案,解析,在区间(0,)上,尽管函数yax(a1),ylogax(a1)和yxn(n0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,yax(a1)的增长速度越来越快,会超过并远远大于yxn(n0)的增长速度,而ylogax(a1)的增长速度则

4、会越来越慢.因此,总会存在一个x0,当xx0时,就有logaxxnax.,反思与感悟,解析 f(x)为偶函数,排除A、B.当x1时,ylg|x|lg x0,且增长速度小于yx2,,答案,解析,解析 四个函数中,A的增长速度不变,B、C增长速度越来越快,其中C增长速度比B更快,D增长速度越来越慢,故只有D能反映y与x的关系.,命题角度1 选择函数模型 例2 某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y与售出商品的数量x的关系,则可选用 A.一次函数 B.二次函数

5、C.指数型函数 D.对数型函数,类型二 函数模型应用,答案,解析,根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性来确定适合题意的函数模型.,反思与感悟,跟踪训练2 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,则正确的是,答案,解 按甲,每年利息10010%10,5年后本息合计150万元; 按乙,第一年本息合计1001.09,第二年本息合计1001.092,5年后本息合计1001.095153.86(万元). 故按乙方案投资5年可多得利

6、3.86万元,乙方案投资更有利.,命题角度2 用函数模型决策 例3 某公司预投资100万元,有两种投资可供选择: 甲方案年利率10%,按单利计算,5年后收回本金和利息; 乙方案年利率9%,按每年复利一次计算,5年后收回本金和利息. 哪种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元),解答,建立函数模型是为了预测和决策,预测准不准主要靠建立的函数模型与实际的拟合程度.而要获得好的拟合度,就需要丰富、详实的数据.,反思与感悟,跟踪训练3 一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票

7、,按原价 优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.,解 设家庭中孩子数为x(x1,xN*),旅游收费为y,旅游原价为a.,解答,当x1时,两家旅行社收费相等. 当x1时,甲旅行社更优惠.,当堂训练,1.下列函数中随x的增长而增长最快的是 A.yex B.yln x C.yx100 D.y2x,答案,2,3,4,5,1,2.能使不等式log2xx22x一定成立的x的取值区间是 A.(0,) B.(2,) C.(,2) D.(4,),答案,2,3,4,5,1,3.某物体一天中的温度T(单位:)是时间t(单位:h)的函

8、数:T(t)t33t60,t0表示中午12:00,其后t取正值,则下午3时温度为 A.8 B.78 C.112 D.18,答案,2,3,4,5,1,4.下面选项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是 A.y101.05x B.y20x1.5 C.y30lg(x1) D.y50,2,3,4,5,1,答案,2,3,4,5,1,解析,答案,2,3,4,5,1,则有I1I0107. 同理得I2I0106,,1.四类不同增长的函数模型 (1)增长速度不变的函数模型是一次函数模型. (2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型. (3)增长速度较慢的函数模型是对数型函数模型. (4)增长速度平稳的函数模型是幂函数模型. 2.函数模型的应用 (1)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论. (2)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.,规律与方法,本课结束,