ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:424.05KB ,
资源ID:57672      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-57672.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019届高三上期末数学分类汇编解析(33)二项分布与正态分布、条件概率与相互独立事件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019届高三上期末数学分类汇编解析(33)二项分布与正态分布、条件概率与相互独立事件

1、(四川省绵阳市 2019 届高三第二次(1 月)诊断性考试数学理试题)14.一个盒子装有 3个红球和 2个蓝球(小球除颜色外其它均相同) ,从盒子中一次性随机取出 3个小球后,再将小球放回重复 50次这样的实验记“取出的 3个小球中有 2个红球,1 个蓝球”发生的次数为 ,则 的方差是_【答案】12【解析】【分析】直接由二项分布的方差公式计算即可.【详解】由题意知 ,其中 n=50,p= = , D( )=50 =12,故答案为 12.【点睛】本题考查了二项分布的概念及方差的计算,属于基础题.(湖南省长沙市 2019 届上学期高三统一检测理科数学试题)5.已知一种元件的使用寿命超过 年的概率为

2、 ,超过 年的概率为 ,若一个这种元件使用到 年时还未失效,则这个元件使用寿命超过 年的概率为( )A. B. C. D. 【答案】A【解析】【分析】结合条件概率计算公式 ,代入数据,即可。【详解】 ,【点睛】本道题考查了条件概率计算公式,难度中等。(河北省武邑中学 2019 届高三上学期期末考试数学(理)试题)4.已知随机变量 服从正态分布 , , ,则 )A. 0.89 B. 0.78 C. 0.22 D. 0.11【答案】D【解析】本题考查正态分布和标准正态分布的转化及概率的计算方法.故选 D(河北省衡水市第十三中学 2019 届高三质检(四)理科数学试题)6.抽奖箱中有 15 个形状一

3、样,颜色不一样的乒乓球(2 个红色,3 个黄色,其余为白色) ,抽到红球为一等奖,黄球为二等奖,白球不中奖。有 90 人依次进行有放回抽奖,则这 90人中中奖人数的期望值和方差分别是( )A. 6,0.4 B. 18,14.4 C. 30,10 D. 30,20【答案】D【解析】【分析】根据题意可得中奖的概率,而中奖人数服从二项分布,由此即可得到答案.【详解】由题可得中奖概率为 ,而中奖人数服从二项分布,故这 90 人中中奖人数的期望值为 方差为 故选 D.【点睛】本题考查二项分布的判别及其期望和方差的求法,属中档题.(河北省衡水市第十三中学 2019 届高三质检(四)理科数学试题)7.已知随

4、机变量 ,其正态分布密度曲线如图所示,若向长方形 中随机投掷1点,则该点恰好落在阴影部分的概率为( )附:若随机变量 ,则 , .A. 0.1359 B. 0.7282 C. 0.8641 D. 0.93205【答案】D【解析】【分析】根据正态分布密度曲线的对称性和性质,再利用面积比的几何概型求解概率,即可得到答案【详解】由题意,根据正态分布密度曲线的对称性,可得:,故所求的概率为 .故选 D.【点睛】本题主要考查了几何概型中概率的计算,以及正态分布密度曲线的应用,其中解答中熟记正态分布密度曲线的对称性是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题(河北省沧州市 2019 年

5、普通高等学校招生全国统一模拟考试理科数学试题)13.体育课上定点投篮项目测试规则:每位同学有 次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投 次为止.每次投中与否相互独立,某同学一次投篮投中的概率为 ,若该同学本次测试合格的概率为 ,则 _【答案】【解析】【分析】由题意可得: ,据此求解关于实数 p 的方程确定实数 p 的值即可.【详解】由题意可得: ,整理可得: ,即 ,该方程存在唯一的实数根 .故答案为: 0.4【点睛】本题主要考查独立事件概率公式及其应用,属于基础题.(西安市 2019 届高三年级第一次质量检测文科数学)4.甲、乙两人练习射击,命中目标的概率分别为 和 ,甲、乙两

6、人各射击一次,目标被命中的概率为( )A. B. C. D. 【答案】A【解析】甲、乙两人各射击一次,目标没被命中的概率为 ,甲、乙两人各射击一次,目标被命中的概率为 .所以 A 选项是正确的.(江西省红色七校 2019 届高三第二次联考数学(理)试题)19.当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度 2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1 分钟跳绳三项测试,三项考试满分 50分,其中立定跳远 15分,掷实心球 15分,1 分钟跳绳 20分.某学

7、校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了 100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:每分钟跳绳个数得分 17 18 19 20()现从样本的 100名学生中,任意选取 2人,求两人得分之和不大于 35分的概率;()若该校初三年级所有学生的跳绳个数 服从正态分布 ,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差 (各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加 10个,现利用所得正态分布模型:预计全年级恰有 2

8、000名学生,正式测试每分钟跳 182个以上的人数;(结果四舍五入到整数)若在全年级所有学生中任意选取 3人,记正式测试时每分钟跳 195以上的人数为 ,求随机变量的分布列和期望.附:若随机变量 服从正态分布 ,则 , .【答案】 (I) ;(II) ; 详见解析.【解析】【分析】()根据古典概率概率公式求解即可得到结果;()先根据频率分布直方图得到平均数 个,结合题意得到正式测试时 根据正态曲线的对称性可得,由此可预计所求人数; 由题意得 ,根据独立重复试验的概率可得当 分别取 时的概率,然后可得分布列及期望【详解】 ()设“两人得分之和不大于 35分”为事件 A,则事件 A包括两种情况:两

9、人得分均为 17分;两人中 1人得 17分,1 人得 18分由古典概型概率公式可得 ,所以两人得分之和不大于 35分的概率为 ()由频率分布直方图可得样本数据的平均数为(个) ,又由 ,所以正式测试时 , 由正态曲线的对称性可得 (人) ,所以可预计全年级恰有 2000名学生,正式测试每分钟跳 182个以上的人数为 1683人 由正态分布模型,全年级所有学生中任取 1人,每分钟跳绳个数 195以上的概率为0.5,所以 的分布列为0 1 2 3 【点睛】 (1)离散型随机变量的期望与方差的应用,是高考的重要考点 ,不仅考查学生的理解能力与数学计算能力,而且不断创新问题情境 ,突出学生运用概率、期

10、望与方差解决实际问题的能力,以解答题为主,中等难度(2)利用正态曲线的对称性求概率的方法解题的关键是利用对称轴 x 确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,一般要借助图形判断 、分析,解题时要充分利用正态曲线的对称性和曲线与 x 轴之间的面积为 1 这些特殊性质(江西省上饶市重点中学 2019 届高三六校第一次联考数学(文)试卷)17.一次数学考试有 4道填空题,共 20分,每道题完全答对得 5分,否则得 0分在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为 、 ,且每题答对与否相互独立(1)当 时,求考生填空题得满分的概率;(2)

11、若考生填空题得 10分与得 15分的概率相等,求 的值【答案】 (1) ;(2)【解析】【分析】(1)记事件 A为考生填空题得满分,利用相互独立事件的概率公式,得出结果.(2)记事件 B,C 分别为考生填空题得 10,15分,利用相互独立事件的概率公式,得出结果相等即可求出 P.【详解】设考生填空题得满分、15 分、10 分为事件 A、B、C(1) (2) = = 因为 , 所以 = 得【点睛】本题考查相互独立事件的概率问题,属于基础题.(辽宁省丹东市 2018 年高三模拟(二)理科数学试题)18.近年来,双十一购物狂欢节(简称“双 11”)活动已成为中国电子商务行业年度盛事,某网络商家为制定

12、 2018年“双 11”活动营销策略,调查了 2017年“双 11”活动期间每位网购客户用于网购时间 (单位:小时) ,发现 近似服从正态分布 (1)求 的估计值;(2)该商家随机抽取参与 2017年“双 11”活动的 10000名网购客户,这 10000名客户在2017年“双 11”活动期间,用于网购时间 属于区间 的客户数为 该商家计划在2018年“双 11”活动前对这 名客户发送广告,所发广告的费用为每位客户 0.05元 (i)求该商家所发广告总费用的平均估计值 ;(ii)求使 取最大值时的整数 的值附:若随机变量 服从正态分布 ,则 , , 【答案】 (1) ;(2)4772【解析】分

13、析:(1)由 ,结合题中数据求解即可;(2) (i)先计算 ,依题意 ,由二项分布得 ,再乘以0.05即可得解;(ii)由 ,设 最大,则 ,求解不等式组即可.详解:(1)因为 , , ,所以 (2)(i) 依题意 ,所以 故商家广告总费用的估计值为(元) (ii) 设 最大,则 ,即 ,解得因为 ,所以使 取最大值时的整数 点睛:本题主要考查了正态分布和二项分布的相关知识,属于中档题.(江西省新余市 2019 届高三上学期期末考试数学(理)试题)18.现有 4名学生参加演讲比赛,有 两个题目可供选择,组委会决定让选手通过掷一枚质地均匀的骰子选择演讲的题目,规则如下:选手掷出能被 3整除的数则

14、选择 题目,掷出其他的数则选择 题目.(1)求这 4个人中恰好有 1个人选择 题目的概率;(2)用 分别表示这 4个人中选择 题目的人数,记 ,求随机变量 的分布列与数学期望 .【答案】 (1) ;(2)分布列见解析,期望为 【解析】试题分析:(1)本题为二项分布模型,由题可知,选择 题目的概率为 ,选择 题目的概率为 ,则 ,所以这 4人中恰有一人选择 题目的概率为;(2) 的所有可能取值为 0,3,4, ,写出分布列,并求期望。试题解析:由题意知,这 4个人中每个人选择 题目的概率为 ,选择 题目的概率为 ,记“这 4个人中恰有 人选择 题目”为事件 , ,(1)这 4人中恰有一人选择 题

15、目的概率为 .(2) 的所有可能取值为 0,3,4,且,. 的分布列是所以 .(广西桂林、贺州、崇左三市 2018 届高三第二次联合调研考试数学(理)试题)18.在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的 1000人的得分(满分 100分)统计结果如下表所示.组别频数 25 150 200 250 225 100 50(1)由频数分布表可以大致认为,此次问卷调查的得分 服从正态分布 , 近似为这 1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布

16、的知识求 ;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::()得分不低于 的可以获赠 2次随机话费,得分低于 的可以获赠 1次随机话费;()每次获赠送的随机话费和对应的概率为:赠送的随机话费(单元:元)20 40概率 0.75 0.25现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式,若 ,则 ; ; .【答案】 (1)0.8186.(2)见解析.【解析】【分析】(1)由题意结合题意可得 , ,结合正态分布图像的对称性可得.(2)由题意可知 的可能取值为 , , , .且 ; ; ;.据此可得分布列,结合分布列计算数学期望可得 .【详解】 (1).故 , , ,. .综上, .(2)易知 ,获奖券面值 的可能取值为 , , , .; ; .的分布列为: .【点睛】本题主要考查正态分布的应用,概率分布列和数学期望的求解等知识,意在考查学生的转化能力和计算求解能力.