ImageVerifierCode 换一换
格式:PPTX , 页数:38 ,大小:1.85MB ,
资源ID:55988      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-55988.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版高中数学必修四课件:2.4.1 平面向量的坐标表示-4.2 平面向量线性运算的坐标表示)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版高中数学必修四课件:2.4.1 平面向量的坐标表示-4.2 平面向量线性运算的坐标表示

1、4.1 平面向量的坐标表示 4.2 平面向量线性运算的坐标表示,学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示. 2.掌握两个向量和、差及数乘向量的坐标运算法则. 3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量的正交分解,思考,如果向量a与b的夹角是90,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?,答案,答案 互相垂直的两个向量能作为平面内所有向量的一组基底,把一个向量分解为 的向量,叫作把向量正交分解,梳理,两个互相垂直,知识点二 平面向量的坐标表示,思考1,

2、如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30,且|a|4,以向量i,j为基底,如何表示向量a?,答案,答案 a2 i2j.,思考2,在平面直角坐标系内,给定点A的坐标为A(1,1),则A点位置确定了吗?给定向量a的坐标为a(1,1),则向量a的位置确定了吗?,答案,答案 对于A点,若给定坐标为A(1,1),则A点位置确定对于向量a,给定a的坐标为a(1,1),此时给出了a的方向和大小,但因为向量的位置由起点和终点确定,且向量可以任意平移,因此a的位置还与其起点有关,所以不确定,思考3,设向量 (1,1),O为坐标原点,若将向量 平移到 ,则 的坐标是多少?A点坐标是多少?,

3、答案,答案 向量 的坐标为 (1,1),A点坐标为A(1,1),(1)平面向量的坐标 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个 i、 j作为基底对于平面内的任意向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得axiyj.我们把实数对(x,y)叫作向量a的坐标,记作a(x,y) 在平面直角坐标平面中,i(1,0),j(0,1),0(0,0),梳理,单位向量,(2)点的坐标与向量坐标的区别和联系,知识点三 平面向量的坐标运算,思考,设i、j是分别与x轴、y轴同向的两个单位向量,若设a(x1,y1),b(x2,y2),则ax1iy1j,bx2iy2j,根据向量的线性运算性质,

4、向量ab,ab,a(R)如何分别用基底i、j表示?,答案,答案 ab(x1x2)i(y1y2)j, ab(x1x2)i(y1y2)j, ax1iy1j.,设a(x1,y1),b(x2,y2),A(x1,y1),B(x2,y2).,梳理,题型探究,类型一 平面向量的坐标表示,例1 如图,在平面直角坐标系xOy中,OA4,AB3,AOx45,OAB105, a, b.四边形OABC为平行四边形,解答,(1)求向量a,b的坐标;,解 作AMx轴于点M,则OMOAcos 45,AMOAsin 45,AOC18010575,AOy45, COy30. 又OCAB3,,(2)求向量 的坐标;,解答,(3)

5、求点B的坐标,解答,在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标的定义求坐标一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围,反思与感悟,跟踪训练1 已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,点C在第一象限,D为AC的中点,分别求向量 , , , 的坐标,解 如图,正三角形ABC的边长为2, 则顶点A(0,0),B(2,0),C(2cos 60,2sin 60),,解答,例2 已知A(2,4),B(3,1),C(3,4)设 a, b, c. (1)求3ab3c;,类型二 平

6、面向量的坐标运算,解答,解 由已知得a(5,5),b(6,3),c(1,8) 3ab3c3(5,5)(6,3)3(1,8) (1563,15324)(6,42),(2)求满足ambnc的实数m,n的值,解答,解 mbnc(6mn,3m8n)a(5,5),,向量坐标运算的方法 (1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行 (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算 (3)向量的线性坐标运算可完全类比数的运算进行,反思与感悟,解答,跟踪训练2 已知a(1,2),b(2,1),求: (1)2a3b;,解 2a3b2(1,2)3(2,1

7、)(2,4)(6,3)(4,7),(2)a3b;,解 a3b(1,2)3(2,1)(1,2)(6,3)(7,1),例3 已知点A(2,3),B(5,4),C(7,10)若 (R),试求当为何值时: (1)点P在第一、三象限的角平分线上;,类型三 平面向量坐标运算的应用,解答,解 设点P的坐标为(x,y),,若点P在第一、三象限的角平分线上,则5547,,(2)点P在第三象限内,解答,当(,1)时,点P在第三象限内,(1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用 (2)坐标形式下向量相等的条件:相等

8、向量的对应坐标相等;对应坐标相等的向量是相等向量由此可建立相等关系求某些参数的值,反思与感悟,跟踪训练3 已知向量a(2,1),b(1,2),若manb(9,8)(m,nR),则mn的值为_,解析 a(2,1),b(1,2), manb(2mn,m2n)(9,8),,3,故mn253.,答案,解析,当堂训练,1.设平面向量a(3,5),b(2,1),则a2b等于 A.(7,3) B.(7,7) C.(1,7) D.(1,3),2,3,4,5,1,答案,2,3,4,5,1,答案,解析,3.已知四边形ABCD的三个顶点A(0,2),B(1,2),C(3,1),且 2 , 则顶点D的坐标为,答案,2

9、,3,4,5,1,解析,答案,解析,2,3,4,5,1,4.已知点A(0,1),B(3,2),向量 (4,3),则向量 等于 A.(7,4) B.(7,4) C.(1,4) D.(1,4),2,3,4,5,1,5.如图,在66的方格纸中,若起点和终点均在格点的向量a,b,c满足cxayb(x,yR),则xy_.,答案,解析,2,3,4,5,1,解析 建立如图所示的平面直角坐标系,设小方格的边长为1,则可得a(1,2),b(2,3),c(3,4).,规律与方法,1.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据.向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化. 2.要区分向量终点的坐标与向量的坐标.由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点,则向量的终点坐标不是向量的坐标,此时 (xBxA,yByA). 3.向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来向量坐标的积.,本课结束,