ImageVerifierCode 换一换
格式:PPTX , 页数:34 ,大小:1.07MB ,
资源ID:55672      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-55672.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学选修2-3课件:2.1.1 离散型随机变量)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学选修2-3课件:2.1.1 离散型随机变量

1、2.1.1 离散型随机变量,第二章 2.1 离散型随机变量及其分布列,学习目标 1.理解随机变量及离散型随机变量的含义. 2.了解随机变量与函数的区别与联系.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 随机变量,思考1,抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗?,答案,答案 可以,可用数字1和0分别表示正面向上和反面向上.,思考2,在一块地里种10棵树苗,棵数为x,则x可取哪些数字?,答案,答案 x0,1,2,3,10.,(1)定义 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的 表示, 随着试验结果的变化而

2、变化,像这种随着 变化而变化的变量称为随机变量. (2)随机变量常用字母 表示.,梳理,数字,数字,试验结果,X,Y,,思考,知识点二 随机变量与函数的关系,随机变量和函数有类似的地方吗?,答案,答案 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.试验结果相当于函数的自变量,随机变量相当于函数的函数值,随机变量可以看作函数概念的推广.,随机变量与函数,梳理,知识点三 离散型随机变量,1.定义:所有取值可以 的随机变量称为离散型随机变量. 2.特征: (1)可用数值表示. (2)试验之前可以判断其出现的所有值. (3)在试验之前不能确定取何值. (4)试验结果

3、能一一列出.,一一列出,题型探究,例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量;,解 某机场一年中每天运送乘客的数量可能为0,1,2,3,是随机变化的,因此是随机变量.,解答,类型一 随机变量的概念,(2)某单位办公室一天中接到电话的次数;,解 某单位办公室一天中接到电话的次数可能为0,1,2,3,是随机变化的,因此是随机变量.,(3)明年5月1日到10月1日期间所查酒驾的人数;,解 明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,是随机变化的,因此是随机变量.,解答,(4)明年某天济南青岛的某次列车到达青岛站的时间.

4、,解 济南青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,也可能晚点,故是随机变量.,随机变量的辨析方法 (1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同. (2)随机试验的结果的不确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.,反思与感悟,跟踪训练1 掷均匀硬币一次,随机变量为 A.掷硬币的次数 B.出现正面向上的次数 C.出现正面向上的次数或反面向上的次数 D.出现正面向上的次数与反面向上的次数之和,答案,解析,解析 掷一枚硬币,可能出现

5、的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量,的取值是0,1. A项中,掷硬币的次数就是1,不是随机变量; C项中的标准模糊不清; D项中,出现正面向上的次数和反面向上的次数的和必是1,对应的是必然事件,试验前便知是必然出现的结果,所以不是随机变量.故选B.,例2 下面给出四个随机变量: 某高速公路上某收费站在未来1小时内经过的车辆数X是一个随机变量; 一个沿直线yx进行随机运动的质点,它在该直线上的位置Y是一个随机变量; 某网站未来1小时内的点击量; 一天内的温度. 其中是离散型随机变量的为 A. B. C. D.,类型二 离散型随

6、机变量的判定,答案,解析,解析 是,因为1小时内经过该收费站的车辆可一一列出; 不是,质点在直线yx上运动时的位置无法一一列出; 是,1小时内网站的访问次数可一一列出; 不是,1天内的温度是该天最低温度和最高温度这一范围内的任意实数,无法一一列出.故选C.,“三步法”判定离散型随机变量 (1)依据具体情境分析变量是否为随机变量. (2)由条件求解随机变量的值域. (3)判断变量的取值能否一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.,反思与感悟,跟踪训练2 某座大桥一天经过的某品牌轿车的辆数为;某网站中歌曲爱我中华一天内被点击的次数为;体积为1 000 cm3的球的半径长;

7、射手对目标进行射击,击中目标得1分,未击中目标得0分,用表示该射手在一次射击中的得分.上述问题中的是离散型随机变量的是 A. B. C. D.,解析 由题意知中的球的半径是固定的,可以求出来,所以不是随机变量,而是随机变量.,答案,解析,例3 写出下列随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果. (1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X;,类型三 用随机变量表示随机试验的结果,解 X0表示取5个球全是红球; X1表示取1个白球,4个红球; X2表示取2个白球,3个红球; X3表示取3个白球,2个红球.,解答,(2)一个袋中有5个同样大小的

8、黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.,解 X3表示取出的球编号为1,2,3; X4表示取出的球编号为1,2,4;1,3,4或2,3,4; X5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.,解答,引申探究 在本例(1)条件下,若规定取出一个红球赢2元,而每取出一个白球输1元,以表示赢得的钱数,结果如何?,解 10表示取5个球全是红球; 7表示取1个白球,4个红球; 4表示取2个白球,3个红球; 1表示取3个白球,2个红球.,解答,解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即

9、一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.,反思与感悟,跟踪训练3 写出下列随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果. (1)从学校回家要经过3个红绿灯口,可能遇到红灯的次数;,解 可取0,1,2,3, 0表示遇到红灯的次数为0; 1表示遇到红灯的次数为1; 2表示遇到红灯的次数为2; 3表示遇到红灯的次数为3.,解答,(2)电台在每个整点都报时,报时所需时间为0.5分钟,某人随机打开收音机对时间,他所等待的时间为分钟.,解 的可能取值为区间0,59.5内任何一个值,每一个可能取值表示他所等待的时间.,解答,当堂训练,1.下列变量

10、中,不是随机变量的是 A.一射击手射击一次命中的环数 B.标准状态下,水沸腾时的温度 C.抛掷两枚骰子,所得点数之和 D.某电话总机在时间区间(0,T)内收到的呼叫次数,2,3,4,5,1,解析,解析 B中水沸腾时的温度是一个确定的值.,答案,2,3,4,5,1,2.10件产品中有3件次品,从中任取2件,可作为随机变量的是 A.取到产品的件数 B.取到正品的概率 C.取到次品的件数 D.取到次品的概率,解析,解析 对于A中取到产品的件数,是一个常量不是变量,B、D也是一个常量,而C中取到次品的件数可能是0,1,2,是随机变量.,答案,2,3,4,5,1,3.下列叙述中,是离散型随机变量的为 A

11、.某人早晨在车站等出租车的时间 B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 C.射击十次,命中目标的次数 D.袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性,答案,4.从标有110的10支竹签中任取2支,设所得2支竹签上的数字之和为X,那么随机变量X可能取得的值有_个.,答案,2,3,4,5,1,解析,解析 X的可能取值为3,4,5,19,共17个.,17,5.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”.用表示需要比赛的局数,写出“6”时表示的试验结果.,解答,解 根据题意可知,6表示甲在前5局中胜3局且在第6局中胜出或乙在前5局中胜3局且在第6局中胜出.,2,3,4,5,1,规律与方法,1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件. 2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.,本课结束,