ImageVerifierCode 换一换
格式:PPTX , 页数:44 ,大小:2.76MB ,
资源ID:55646      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-55646.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学选修2-2课件:1.5.1 曲边梯形的面积-1.5.2 汽车行驶的路程)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学选修2-2课件:1.5.1 曲边梯形的面积-1.5.2 汽车行驶的路程

1、1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程,学习目标 1.了解“以直代曲”、“以不变代变”的思想方法. 2.会求曲边梯形的面积和汽车行驶的路程.,,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 曲边梯形的面积,思考1,如何计算下列两图形的面积?,答案 直接利用梯形面积公式求解. 转化为三角形和梯形求解.,答案,思考2,如图,为求由抛物线yx2与直线x1,y0所围成的平面图形的面积S,图形与我们熟悉的“直边图形”有什么区别?,答案 已知图形是由直线x1,y0和曲线yx2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段.,答案,思考3,

2、能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤),答案,答案 (1)曲边梯形:由直线xa,xb(ab),y0和曲线yf(x)所围成的图形称为曲边梯形(如图所示). (2)求曲边梯形面积的方法 把区间a,b分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图所示).,(3)求曲边梯形面积的步骤:分割;近似代替;求和;取极限.,知识点二 求变速直线运动的(位移)路程,一般地,如果物体做变速直线运动,速度函数为vv(t),那

3、么也可以采用 、 、 、 的方法,求出它在atb内所作的位移s.,分割,近似代替,求和,取极限,题型探究,类型一 求曲边梯形的面积,例1 求由直线x0,x1,y0和曲线yx(x1)围成的图形面积.,解答,解 (1)分割,(2)近似代替,(3)求和,(4)取极限,求曲边梯形的面积 (1)思想:以直代曲. (2)步骤:分割近似代替求和取极限. (3)关键:近似代替. (4)结果:分割越细,面积越精确.,反思与感悟,(5)求和时可用到一些常见的求和公式,如,跟踪训练1 求由抛物线yx2与直线y4所围成的曲边梯形的面积.,解答,解 yx2为偶函数,图象关于y轴对称, 所求曲边梯形的面积应为抛物线yx2

4、(x0)与直线x0,y4所围图形面积S阴影的2倍,下面求S阴影.,得交点为(2,4),如图所示,先求由直线x0,x2,y0和曲线yx2围成的曲边梯形的面积.,(1)分割 将区间0,2 n等分,,(2)近似代替求和,(3)取极限,类型二 求变速运动的路程,例2 当汽车以速度v做匀速直线运动时,经过时间t所行驶的路程svt.如果汽车做变速直线运动,在时刻t的速度为v(t)t22(单位:km/h),那么它在1t2(单位:h)这段时间行驶的路程是多少?,解答,解 将区间1,2等分成n个小区间,,引申探究 本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?,解答,

5、所以分别用小区间的两个端点求出的行驶路程是相同的.,求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.,反思与感悟,跟踪训练2 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t的速度为v(t)t25(t的单位:h,v的单位:km/h),试计算这辆汽车在0t2这段时间内汽车行驶的路程s(单位:km).,解答,解 分割,近似代替,求和,取极限,当堂训练,1,2,3,4,5,1.把区间1,3 n等分,所得n个小区间的长度均为,答案,解析,1,2,3,4,5,2.在“近似代替”中,函数

6、f(x)在区间xi,xi1上的近似值等于 A.只能是左端点的函数值f(xi) B.只能是右端点的函数值f(xi1) C.可以是该区间内任一点的函数值f(i)(ixi,xi1) D.以上答案均正确,答案,1,2,3,4,5,3.一物体沿直线运动,其速度v(t)t,这个物体在t0到t1这段时间内所走的路程为,答案,1,2,3,4,5,4.求由曲线y x2与直线x1,x2,y0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是_.,1.02,答案,解析,于是所求平面图形的面积近似等于,1,2,3,4,5,5.求由直线x0,x1,y0及曲线f(x) x2所围成的图形的面积.,解答,1,2,3,4,5,解 (1)分割,过各分点作x轴的垂线,将曲边梯形分成n个小曲边梯形,它们的面积分别记作S1,S2,Sn.,1,2,3,4,5,(2)近似代替,1,2,3,4,5,(3)求和 曲边梯形的面积为,1,2,3,4,5,(4)取极限 曲边梯形的面积为,规律与方法,求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n等分区间a,b; (2)近似代替:取点ixi1,xi;,“近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).,本课结束,