1、2019 年湖南省邵阳市新宁县中考数学模拟试卷(二)一、选择题(每小题四个选项中,只有一项最符合题意本大题共 10 个小题,每小题 3 分,共 30分)1下列说法正确的是( )A0.064 的立方根是 0.4B9 的平方根是3C16 的立方根是 2D0.01 的立方根是 0.0000012a 4b6a 3b+9a2b 分解因式得正确结果为( )Aa 2b(a 26a+9) Ba 2b(a3)(a+3)Cb(a 23) 2 Da 2b(a 3) 23如图,将一块含有 30角的直角三角板的两个顶点叠放在矩形的两条对边上,如果1 度,2 度,则( )A+150 B +90 C+60 D 304任意取
2、两个整数,它们的差仍然是整数的概率是( )A0 B C D15已知空气的单位体积质量为 1.24103 克/厘米 3,1.2410 3 用小数表示为( )A0.000124 B0.0124 C0.00124 D0.001246已知直线 ymx1 上有一点 B(1,n),它到原点的距离是 ,则此直线与两坐标轴围成的三角形的面积为( )A B 或 C 或 D 或7如图,已知ABC,D,E 分别是 AB,AC 边上的点AD3cm ,AB8cm,AC10cm若ADEABC,则 AE 的值为( )A cm B cm 或 cmC cm 或 cm D cm8九章算术是中国传统数学最重要的著作,奠定了中国传统
3、数学的基本框架它的代数成就主要包括开方术、正负术和方程术其中,方程术是九章算术最高的数学成就九2x6 章算术 中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”译文:“假设有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱问:有几个人共同出钱买鸡?鸡的价钱是多少?”设有 x 个人共同买鸡,根据题意列一元一次方程,正确的是( )A9x+116x16 B9x116x+16C D9一组数据:3,4,5,x,8 的众数是 5,则这组数据的方差是( )A2 B2.4 C2.8 D310已知等边三角形的内切圆半径,外接圆半径和高的比是( )A1
4、:2: B2:3:4 C1: : 2 D1:2:3二、填空题(本大题共 8 小题;共 24 分)11 的相反数是 ,它的倒数是 ,它的绝对值是 12设 m,n 分别为一元二次方程 x2+2x20180 的两个实数根,则 m2+3m+n 13如图,已知正五边形 ABCDE,AFCD,交 DB 的延长线于点 F,则DFA 度14平行四边形 ABOC 在平面直角坐标系中,A、B 的坐标分别为(3,3),(4,0)则过C 的双曲线表达式为: 15某班主任把本班学生上学方式的调查结果绘制成如图所示的不完整的统计图,已知骑自行车上学的学生有 26 人,则采用其他方式上学的学生人数为 人16已知一次函数 y
5、ax +b(a、b 为常数),x 与 y 的部分对应值如右表:x 2 1 0 1 2 3 y 6 4 2 0 2 4那么方程 ax+b0 的解是 ,不等式 ax+b0 的解是 17如图,AOB 是直角三角形,AOB90,ABO30,点 A 在反比例函数 y 的图象上,若点 B 在反比例函数 y 的图象上,则 k 18如图,正方形 ABCB1 中,AB1,AB 与直线 l 的夹角为 30,延长 CB1 交直线 l 于点 A1,作正方形 A1B1C1B2,延长 C1B2 交直线 l 于点 A2,作正方形 A2B2C2B3,延长 C2B3 交直线 l 于点A3,作正方形 A3B3C3B4,依此规律,
6、则 A2016A2017 三、解答题(本大题共 8 小题;共 66 分)19(1)计算:| |+( ) 1 2cos45(2)解方程: + 120如图:已知 ABACAD,且 ADBC求证:C2D21先化简,再求值:(x+3) 2+(x+2)(x2)2x 2,其中 x122“泰微课”是学生自主学习的平台,某初级中学共有 1200 名学生,每人每周学习的数学泰微课都在 6 至 30 个之间(含 6 和 30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中
7、每周学习数学泰微课在 16 至 30 个之间(含 16 和 30)的人数23甲、乙两个工程队计划修建一条长 15 千米的乡村公路,已知甲工程队每天比乙工程队每天多修路 0.5 千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5 倍(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为 0.5 万元,乙工程队每天的修路费用为 0.4 万元,要使两个工程队修路总费用不超过 5.2 万元,甲工程队至少修路多少天?24已知:如图,在ABC 中,ABAC ,以 AB 为直径的O 交 BC 于点 D,过点 D 作 DEAC于点 E求证: DE 是O 的切
8、线25如图,四边形 ABCD 中,AABC90,AD 3,BC5,E 是边 CD 的中点,连结 BE并延长与 AD 的延长线相交于点 F(1)求证:四边形 BDFC 是平行四边形(2)若 BDBC,求四边形 BDFC 的面积26如图,AB 为O 的直径,BF 切 O 于点 B,AF 交O 于点 D,点 C 在 DF 上,BC 交O 于点 E,且 BAF2CBF,CGBF 于点 G,连接 AE(1)直接写出 AE 与 BC 的位置关系;(2)求证:BCGACE;(3)若F60,GF1,求 O 的半径长2019 年湖南省邵阳市新宁县中考数学模拟试卷(二)参考答案与试题解析一、选择题(每小题四个选项
9、中,只有一项最符合题意本大题共 10 个小题,每小题 3 分,共 30分)1下列说法正确的是( )A0.064 的立方根是 0.4B9 的平方根是3C16 的立方根是 2D0.01 的立方根是 0.000001【分析】根据立方根、平方根的定义逐个进行判断即可【解答】解:A、0.064 的立方根是0.4,故本选项错误;B、9 没有平方根,故本选项错误;C、16 的立方根是 2 ,故本选项正确;D、0.000000000000000001 的立方根是 0.000001,故本选项错误;故选:C【点评】本题考查了对平方根,立方根的应用,主要考查学生的理解能力和计算能力2a 4b6a 3b+9a2b 分
10、解因式得正确结果为( )Aa 2b(a 26a+9) Ba 2b(a3)(a+3)Cb(a 23) 2 Da 2b(a 3) 2【分析】先提取公因式 a2b,再根据完全平方公式进行二次分解即可求得答案【解答】解:a 4b6a 3b+9a2ba 2b(a 26a+9)a 2b(a3) 2故选:D【点评】本题考查了提公因式法,公式法分解因式的知识注意提取公因式后利用完全平方公式进行二次分解,注意分解要彻底3如图,将一块含有 30角的直角三角板的两个顶点叠放在矩形的两条对边上,如果1 度,2 度,则( )A+150 B +90 C+60 D 30【分析】根据三角形的一个外角等于与它不相邻的两个内角的
11、和求出3,再根据两直线平行,同位角相等可得23【解答】解:由三角形的外角性质,330+1,矩形的对边平行,2330+130,故选:D【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键4任意取两个整数,它们的差仍然是整数的概率是( )A0 B C D1【分析】任意取两个整数,可知他们的差一定是整数这是必然事件,其概率为 1【解答】解:任意取两个整数,它们的差仍然是整数的概率是 1故选 D【点评】考查了对必然事件的理解以及对概率意义的理解与应用用到的知识点为:必然事件发生的概率为 15已知空气的单位体积质量为 1.24103 克/厘米 3,1.
12、2410 3 用小数表示为( )A0.000124 B0.0124 C0.00124 D0.00124【分析】科学记数法的标准形式为 a10n(1|a| 10, n 为整数)本题把数据“1.2410 3中 1.24 的小数点向左移动 3 位就可以得到【解答】解:把数据“1.2410 3 中 1.24 的小数点向左移动 3 位就可以得到为 0.001 24故选D【点评】本题考查写出用科学记数法表示的原数将科学记数法 a10n 表示的数,“还原”成通常表示的数,就是把 a 的小数点向左移动 n 位所得到的数把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数
13、法表示一个数是否正确的方法6已知直线 ymx1 上有一点 B(1,n),它到原点的距离是 ,则此直线与两坐标轴围成的三角形的面积为( )A B 或 C 或 D 或【分析】求出直线解析式后再求与坐标轴交点坐标,进一步求解【解答】解:点 B(1,n)到原点的距离是 ,n 2+110,即 n3则 B(1,3),代入一次函数解析式得 y4x 1 或 y 2x 1(1)y4x1 与两坐标轴围成的三角形的面积为: 1 ;(2)y2x1 与两坐标轴围成的三角形的面积为: 1 故选:C【点评】主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理
14、和面积公式求解7如图,已知ABC,D,E 分别是 AB,AC 边上的点AD3cm ,AB8cm,AC10cm若ADEABC,则 AE 的值为( )A cm B cm 或 cmC cm 或 cm D cm【分析】先连接 DE,由于 ADEABC ,利用相似三角形的性质,可得 AD:ABAE:AC ,代入数值计算即可【解答】解:连接 DE,ADEABC,AD:ABAE:AC3:8AE:10AE故选:A【点评】本题考查了相似三角形的性质,该题难度较小8九章算术是中国传统数学最重要的著作,奠定了中国传统数学的基本框架它的代数成就主要包括开方术、正负术和方程术其中,方程术是九章算术最高的数学成就九2x6
15、 章算术 中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”译文:“假设有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱问:有几个人共同出钱买鸡?鸡的价钱是多少?”设有 x 个人共同买鸡,根据题意列一元一次方程,正确的是( )A9x+116x16 B9x116x+16C D【分析】可设有 x 个人共同买鸡,等量关系为:9买鸡人数116买鸡人数+16,即可解答【解答】解:设有 x 个人共同买鸡,可得:9x116x +16,故选:B【点评】此题考查考查一元一次方程的应用,根据鸡价得到等量关系是解决本题的关键9一组数据:3,4,5,x,
16、8 的众数是 5,则这组数据的方差是( )A2 B2.4 C2.8 D3【分析】根据数据的众数确定出 x 的值,进而求出方差即可【解答】解:一组数据 3,4,5,x,8 的众数是 5,x5,这组数据的平均数为 (3+4+5+5+8)5,则这组数据的方差为 ( 35) 2+(45) 2+2(5 4) 2+(85) 22.8故选:C【点评】此题考查了方差,众数,熟练掌握各自的定义是解本题的关键10已知等边三角形的内切圆半径,外接圆半径和高的比是( )A1:2: B2:3:4 C1: : 2 D1:2:3【分析】过中心作边的垂线,连接半径,把内切圆半径,外接圆半径和高,中心角之间的计转化为解直角三角
17、形【解答】解:图中内切圆半径是 OD,外接圆的半径是 OC,高是 AD,因而 ADOC+OD;在直角OCD 中,DOC60,则 OD:OC1:2,因而 OD:OC:AD1:2:3,所以内切圆半径,外接圆半径和高的比是 1:2:3故选 D【点评】正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径,外接圆半径和高,中心角之间的计转化为解直角三角形二、填空题(本大题共 8 小题;共 24 分)11 的相反数是 ,它的倒数是 ,它的绝对值是 【分析】根据相反数、倒数、绝对值,即可解答【解答】解: 的相反数是 ,它的倒数是 ,它的绝对值是 ,故答案为: 【点评】本题考查了相反数、倒数、绝对值
18、,解决本题的关键是熟记相反数、倒数、绝对值的定义12设 m,n 分别为一元二次方程 x2+2x20180 的两个实数根,则 m2+3m+n 2016 【分析】先利用一元二次方程根的定义得到 m22m +2018,则 m2+3m+n 可化简为2018+m+n,再根据根与系数的关系得到 m+n2,然后利用整体代入的方法计算【解答】解:m 为一元二次方程 x2+2x20180 的实数根,m 2+2m20180,即 m2 2m+2018,m 2+3m+n 2m+2018+3m+n2018+ m+n,m,n 分别为一元二次方程 x2+2x20180 的两个实数根,m+ n 2,m 2+3m+n2018
19、22016 【点评】本题考查了根与系数的关系:若 x1,x 2 是一元二次方程 ax2+bx+c0(a0)的两根时,x1+x2 ,x 1x2 也考查了一元二次方程根的定义13如图,已知正五边形 ABCDE,AFCD,交 DB 的延长线于点 F,则DFA 36 度【分析】首先求得正五边形内角C 的度数,然后根据 CDCB 求得CDB 的度数,然后利用平行线的性质求得DFA 的度数即可【解答】解:正五边形的外角为 360572,C18072108 ,CDCB,CDB36,AFCD,DFACDB36,故答案为:36【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角14
20、平行四边形 ABOC 在平面直角坐标系中,A、B 的坐标分别为(3,3),(4,0)则过C 的双曲线表达式为: y 【分析】作 ADOB 于 D,先证明ABDOCE,得出 BDCE1,ADOE 3,得出点 C坐标为(1,3),再设过 C 的双曲线表达式为: y ,把点 C(1,3)代入求出 k 即可得出结果【解答】解:作 ADOB 于 D,如图所示:则ADBOEC90,A、B 的坐标分别为(3,3),(4,0),OB4,AD3,OD3,BD1,四边形 ABOC 是平行四边形,ABOACO,AB OC,在ABD 和OCE 中, ,ABDOCE(AAS ),BDCE1,ADOE 3 ,C(1,3)
21、,设过 C 的双曲线表达式为:y ,把点 C(1,3)代入得:k 3,y ;故答案为:y 【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、反比例函数图象上点的坐标特征以及解析式的求法;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键15某班主任把本班学生上学方式的调查结果绘制成如图所示的不完整的统计图,已知骑自行车上学的学生有 26 人,则采用其他方式上学的学生人数为 4 人【分析】根据题意先求出本班的总人数,然后再根据采用其他方式上学的学生占的比例求出采用其他方式上学的学生人数【解答】解:由图可知骑车上学的学生占本班学生上学方式的 52%,又知步行上学的学生有 26人,本
22、班学生总数:2652% 50 人,由图可知采用其他方式上学的学生占本班学生上学方式的 140%52% 8%,采用其他方式上学的学生人数为 508%4 人故答案为:4【点评】本题考查了扇形统计图,解题时观察扇形图的特点,从扇形图上正确求出各部分数量和总数量之间的关系是解题的关键16已知一次函数 yax +b(a、b 为常数),x 与 y 的部分对应值如右表:x 2 1 0 1 2 3 y 6 4 2 0 2 4那么方程 ax+b0 的解是 x1 ,不等式 ax+b0 的解是 x1 【分析】方程 ax+b0 的解为 y0 时函数 yax+b 的 x 的值,根据图表即可得出此方程的解不等式 ax+b
23、0 的解集为函数 yax +b 中 y0 时自变量 x 的取值范围,由图表可知,y 随 x 的增大而减小,因此 x1 时,函数值 y0;即不等式 ax+b0 的解为 x1【解答】解:根据图表可得:当 x1 时,y0;因而方程 ax+b0 的解是 x1;y 随 x 的增大而减小,因而不等式 ax+b0 的解是:x1故答案为:x1;x 1【点评】本题主要考查了一次函数与一元一次方程,以及一元一次不等式之间的关系17如图,AOB 是直角三角形,AOB90,ABO30,点 A 在反比例函数 y 的图象上,若点 B 在反比例函数 y 的图象上,则 k 6 【分析】要求函数的解析式只要求出 B 点的坐标就
24、可以,过点 A,B 作 ACx 轴,BDx 轴,分别于 C,D根据条件得到ACOODB,得到: ,然后用待定系数法即可【解答】解:过点 A,B 作 ACx 轴,BDx 轴,分别于 C,D设点 A 的坐标是(m,n),则 ACn,OCm AOB90,AOC+BOD90DBO +BOD90,DBO AOC BDO ACO 90,BDO OCA AOB90,ABO 30, , ,设 A(m,n),则 B( n, m),点 A 在反比例函数 y 的图象上,mn2, n m326,k6故答案为:6【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点 B 的坐
25、标(用含 n 的式子表示)是解题的关键18如图,正方形 ABCB1 中,AB1,AB 与直线 l 的夹角为 30,延长 CB1 交直线 l 于点 A1,作正方形 A1B1C1B2,延长 C1B2 交直线 l 于点 A2,作正方形 A2B2C2B3,延长 C2B3 交直线 l 于点A3,作正方形 A3B3C3B4,依此规律,则 A2016A2017 23 1008 【分析】由四边形 ABCB1 是正方形,得到 ABAB 1,ABCB 1,于是得到 ABA 1C,根据平行线的性质得到CA 1A30,解直角三角形得到 A1B1 ,AA 12,同理:A 2A32( )2,A 3A42( ) 3,找出规
26、律 AnAn+12( ) n,答案即可求出【解答】解:四边形 ABCB1 是正方形,ABAB 1,ABCB 1,ABA 1C,CA 1A30,A 1B1 ,AA 12,A 1B2A 1B1 ,A 1A22 ,同理:A 2A32( ) 2,A3A42( ) 3,A nAn+12( ) n,A 2016A20172( ) 201623 1008故答案为:23 1008【点评】本题考查了正方形的性质,含 30直角三角形的性质,平行线的性质的综合应用,求出后一个正方形的边长是前一个正方形的边长的 倍是解题的关键三、解答题(本大题共 8 小题;共 66 分)19(1)计算:| |+( ) 1 2cos4
27、5(2)解方程: + 1【分析】(1)原式利用绝对值的代数意义,【解答】解:(1)原式 +42 4;(2)去分母得:x 2+2x+14x 21,解得:x1,经检验 x1 是增根,分式方程无解【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键20如图:已知 ABACAD,且 ADBC求证:C2D【分析】根据平行线的性质得到D DBC,根据等腰三角形的性质、等量代换证明【解答】证明:ADBC,DDBC,ABAD ,DABD,ABDDBC,ABC2D,ABAC,ABCC,C2D【点评】本题考查的是等腰三角形的性质、平行线的性质,掌握等边对等角是解题的关键21先化简,再求值:
28、(x+3) 2+(x+2)(x2)2x 2,其中 x1【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把 x 的值代入计算即可求出值【解答】解:原式x 2+6x+9+x242x 26x+5,当 x1 时,原式16+51【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键22“泰微课”是学生自主学习的平台,某初级中学共有 1200 名学生,每人每周学习的数学泰微课都在 6 至 30 个之间(含 6 和 30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1
29、)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在 16 至 30 个之间(含 16 和 30)的人数【分析】(1)求得 1620 的频数即可补全条形统计图;(2)用样本估计总体即可;【解答】解:(1)观察统计图知:610 个的有 6 人,占 10%,总人数为 610%60 人,1620 的有 6066241212 人,条形统计图为:(2)该校全体学生中每周学习数学泰微课在 16 至 30 个之间的有 1200 960 人【点评】本题考查了条形统计图及用样本估计总体的知识,解题的关键是认真读两种统计图,并从统计图中整理出进一步解题的信息,难度不大23甲、乙两个工程队计划修建一条长
30、15 千米的乡村公路,已知甲工程队每天比乙工程队每天多修路 0.5 千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5 倍(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为 0.5 万元,乙工程队每天的修路费用为 0.4 万元,要使两个工程队修路总费用不超过 5.2 万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路 x 千米,则乙每天修路(x0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路 a 天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可【解答】解:(1
31、)设甲每天修路 x 千米,则乙每天修路(x0.5)千米,根据题意,可列方程:1.5 ,解得 x1.5,经检验 x1.5 是原方程的解,且 x0.51,答:甲每天修路 1.5 千米,则乙每天修路 1 千米;(2)设甲修路 a 天,则乙需要修(151.5a)千米,乙需要修路 151.5a(天),由题意可得 0.5a+0.4(151.5a)5.2,解得 a8,答:甲工程队至少修路 8 天【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验24已知:如图,在ABC 中,ABAC ,以 AB 为直径的O 交 BC 于点 D,过点 D 作 D
32、EAC于点 E求证: DE 是O 的切线【分析】连接 OD,只要证明 ODDE 即可【解答】证明:连接 OD;ODOB ,BODB ,ABAC,BC,CODB,ODAC,ODE DEC ;DEAC,DEC90,ODE 90 ,即 DEOD ,DE 是 O 的切线【点评】本题考查了切线的判定要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可25如图,四边形 ABCD 中,AABC90,AD 3,BC5,E 是边 CD 的中点,连结 BE并延长与 AD 的延长线相交于点 F(1)求证:四边形 BDFC 是平行四边形(2)若 BDBC,求四边形 BDFC 的面积【分析】
33、(1)根据同旁内角互补两直线平行求出 BCAD,再根据两直线平行,内错角相等可得CBEDFE,然后利用“角角边”证明BEC 和 FCD 全等,根据全等三角形对应边相等可得 BEEF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)利用勾股定理列式求出 AB,然后利用平行四边形的面积公式列式计算即可得【解答】(1)证明:AABC90,BCAD,CBEDFE,又E 是边 CD 的中点,CEDE,在BEC 与FED 中, ,BECFED,BEFE四边形 BDFC 是平行四边形;(2)解:BDBC5,AB 4,四边形 BDFC 的面积BCAB5420【点评】本题考查了平行四边形的判定与性质,
34、平行线的判定、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题26如图,AB 为O 的直径,BF 切 O 于点 B,AF 交O 于点 D,点 C 在 DF 上,BC 交O 于点 E,且 BAF2CBF,CGBF 于点 G,连接 AE(1)直接写出 AE 与 BC 的位置关系;(2)求证:BCGACE;(3)若F60,GF1,求 O 的半径长【分析】(1)由 AB 为O 的直径即可得到 AE 与 BC 垂直(2)易证CBFBAE,再结合条件 BAF2CBF 就可证到CBFCAE,易证CGBAEC,从而证到BCGACE (3)由F60,GF1 可求出 CG ;连接 BD,容易证
35、到DBCCBF,根据角平分线的性质可得 DCCG ;设圆 O 的半径为 r,易证 ACAB,BAD30,从而得到AC2r,AD r,由 DC ACAD 可求出O 的半径长【解答】解:(1)如图 1,AB 是O 的直径,AEB 90AEBC(2)如图 1,BF 与O 相切,ABF 90CBF90ABE BAEBAF 2CBFBAF 2BAE BAE CAECBFCAECGBF ,AE BC,CGBAEC90CBFCAE,CGBAEC,BCGACE(3)连接 BD,如图 2 所示DAEDBE,DAE CBF ,DBECBFAB 是O 的直径,ADB90BDAFDBCCBF,BDAF,CGBF,CDCG F60,GF1,CGF 90,tanF CGtan60CG ,CD AFB 60,ABF 90,BAF 30ADB90,BAF30,AB2BD BAE CAE,AEB AEC,ABE ACEABAC设 O 的半径为 r,则 ACAB2r,BDrADB90,AD rDCACAD2r r( 2 )r r2 +3 O 的半径长为 2 +3【点评】本题考查了切线的性质、圆周角定理、相似三角形的判定、角平分线的性质、30角所对的直角边等于斜边的一半、勾股定理等知识,有一定的综合性连接 BD,证到DBCCBF 是解决第(3)题的关键