ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:2.53MB ,
资源ID:51625      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-51625.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019届中考数学总复习:第12课时-二次函数ppt课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019届中考数学总复习:第12课时-二次函数ppt课件

1、第12课时 二次函数,考点梳理,自主测试,考点一 二次函数的概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a0),那么y叫做x的二次函数.任意一个二次函数都可化成y=ax2+bx+c(a,b,c是常数,a0)的形式,因此y=ax2+bx+c(a0)叫做二次函数的一般形式. 注意:1.二次项系数a0;2.ax2+bx+c必须是整式;3.一次项系数可以为零,常数项也可以为零,一次项系数和常数项可以同时为零;4.自变量x的取值范围是全体实数.,考点二 二次函数的图象及性质,考点梳理,自主测试,考点梳理,自主测试,考点三 二次函数图象的特征与a,b,c及b2-4ac的符号之间的关系,考点梳

2、理,自主测试,考点四 二次函数图象的平移 抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中a相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下:,考点梳理,自主测试,考点五 二次函数关系式的确定 1.设一般式:y=ax2+bx+c(a0) 若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a0),将已知条件代入,求出a,b,c的值. 2.设交点式:y=a(x-x1)(x-x2)(a0) 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a0),将第三点的坐标或其他已知条件代入,求出待定系数a,最

3、后将关系式化为一般式. 3.设顶点式:y=a(x-h)2+k(a0) 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a0),将已知条件代入,求出待定系数化为一般式.,考点梳理,自主测试,考点梳理,自主测试,考点七 二次函数的应用 1.二次函数的应用关键在于建立二次函数的数学模型,这就需要认真审题、理解题意,利用二次函数解决实际问题,应用最多的是根据二次函数的最值确定最大利润、最节省方案等问题. 2.建立平面直角坐标系,把代数问题与几何问题进行互相转化,充分结合三角函数、解直角三角形、相似、全等、圆等知识解决问题,求二次函数的解析式是解题关键.,考点梳

4、理,自主测试,1.抛物线y=(x-2)2+3的顶点坐标是( ) A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3) 答案:A 2.在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( ) A.x1 C.x-1 答案:A 3.已知二次函数y=ax2+bx+c的图象如图,则下列结论正确的是( ) A.a0 B.c0 答案:D,考点梳理,自主测试,4.把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( ) A.y=-(x-1)2-3 B.y=-(x+1)2-3 C.y=-(x-1)2+3 D.y=-(x+1)2

5、+3 答案:D 5.若二次函数y=-x2+2x+k的部分图象如图,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2= . 答案:-1,考点梳理,自主测试,6.函数y=x2+2x+1,当y=0时,x= ;当1-1时,y随x的增大而增大. 当1-1,y随x的增大而增大. 答案:-1 增大,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点1 二次函数的图象及性质 【例1】 (1)二次函数y=-3x2-6x+5的图象的顶点坐标是( ) A.(-1,8) B.(1,8) C.(-1,2) D.(1,-4) (2)已知抛物线y=ax2+bx+c(a0)的

6、对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1和y2的大小:y1_y2.(填“”“0,所以当xy3.故y1y2. 答案:(1)A (2),命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点2 利用二次函数图象判断a,b,c的符号 【例2】 二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2.下列结论: 4a+b=0;9a+c3b;8a+7b+2c0; 当x-1时,y的值随x值的增大而增大. 其中正确的结论有( ) A.1个 B.2个

7、 C.3个 D.4个,解析:因为对称轴为直线x=2,所以- =2,所以4a+b=0,所以正确; 因为当x=-3时,9a-3b+c0,c0,又因为4a+b=0, 所以8a+7b+2c=-2b+7b+2c=5b+2c0,所以正确; 因为当x2时,y的值随x值的增大而减小,所以错误. 所以正确的有2个.故选B. 答案:B,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,变式训练已知二次函数y=ax2+bx+c(a0)的图象如图,有下列结论: b2-4ac0;abc0; 8a+c0;9a+3b+c0,故正确;与

8、y轴交于负半轴,则c0,对称轴x=- =1,b=-2a0,故正确;当x=-2时,y0,此时y=4a-2b+c=4a-2(-2a)+c=8a+c0,故正确;x=1是抛物线的对称轴,由图象知抛物线与x轴的正半轴的交点在3与4之间,则当x=3时,y0,即y=9a+3b+c0,正确,即正确结论有4个. 答案:D,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点3 二次函数图象的平移 【例3】 将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( ) A.y=(x-1)2+4 B.y=(x-4)2+4 C.y=(x+2)2+6 D

9、.y=(x-4)2+6 解析:y=x2-2x+3=(x-1)2+2,向上平移2个单位长度,再向右平移3个单位长度后,得到的解析式为y=(x-1-3)2+2+2,即y=(x-4)2+4.故选B. 答案:B,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点4 确定二次函数的解析式 【例4】 已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8). (1)求该抛物线的表达式; (2)求该抛物线的顶点坐标.,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点

10、1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点5 求二次函数的最大(小)值 【例5】 已知二次函数y=ax2+bx+c(a- ;二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是( ) A.0 B.1 C.2 D.3 解析:因式分解求方程的解,右边应化为0,而现在方程右边为m,所以错误;方程可化简为x2-5x+6-m=0,则=52-4(6-m)0,可解出m - ,所以正确;二次函数可化简为y=x2-(x1+x2)x+x1x2+m,由根与系数的

11、关系,x1+x2=5,x1x2=6-m,y=x2-5x+6-m+m,即y=x2-5x+6,则此二次函数与x轴交点的坐标为(2,0)和(3,0),所以正确.故选C. 答案:C,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,命题点7 二次函数的实际应用 【例7】 如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求该抛物线所对应的函数关系式; (2)求ABD的面积; (3)将三角形AOC

12、绕点C逆时针旋转90,点A对应点为点G,问点G是否在该抛物线上?请说明理由.,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,解:(1)因为四边形OCEF为矩形,OF=2,EF=3,所以点C的坐标(0,3),点E的坐标为(2,3). 把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,所以抛物线所对应的函数关系式为y=-x2+2x+3. (2)因为y=-x2+2x+3=-(x-1)2+4,所以抛物线的顶点坐标为(1,4). 所以在ABD中AB边上的高为4, 令y=0,得-x2+2x+3=0,解之得,x1=-1,x2=3, 所以AB=3-(-1)=4. 于是ABD的面积为 . (3)AOC绕点C逆时针旋转90,CO落在CE所在的直线上,又由(2)可知,OA=1,所以点A的对应点G的坐标为(3,2). 当x=3时,y=-32+23+3=02,所以点G不在该抛物线上.,命题点1,命题点2,命题点3,命题点4,命题点5,命题点6,命题点7,