ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:1.60MB ,
资源ID:49262      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-49262.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版七年级数学下册《6.2.2抛硬币试验》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版七年级数学下册《6.2.2抛硬币试验》课件

1、2 频率的稳定性,导入新课,讲授新课,当堂练习,课堂小结,第六章 概率初步,第2课时 抛硬币试验,学习目标,1.学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力;(重点) 2.通过对问题的分析,理解并掌握用频率来估计概率的方法,渗透转化和估算的思想方法.(难点),抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:,你认为正面朝上和正面朝下的可能性相同吗?,导入新课,问题引入,(1) 同桌两人做20次掷硬币的游戏,并将记录记载在下表中:,讲授新课,做一做,(2)累计全班同学的试验结果, 并将实验数据汇总填入下表:,实验总次数,(3)根据上表,完成下面的折线统计图.,当试

2、验次数很多时, 正面朝上的频率折线差不多稳定在“ 0.5 水平直线” 上.,(4)观察上面的折线统计图,你发现了什么规律?,当实验的次数较少时,折线在“0.5水平直线”的上下摆动的幅度较大,随着实验的次数的增加,折线在“0.5水平直线”的上下摆动的幅度会逐渐变小.,下表列出了一些历史上的数学家所做的 掷硬币实验的数据:,历史上掷硬币实验,历史上掷硬币实验,分析试验结果及下面数学家大量重复试验数据, 大家有何发现?,试验次数越多频率越接近0. 5.,0,视频:抛骰子试验,视频:转转盘试验,无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频

3、率的稳定性.,我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).,归纳总结,事件A发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?,想一想,例 王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保留两位小数):,典例精析,解:(1)25110000.25.大量重复试验事件发生的频率逐渐稳定到0.25附近,估计从袋中摸出一个球是黑球的概率是0.25;,(2)设袋中白球为x个,10.25(1+x),x3.答:估计袋中有3个白球,(1)补全

4、上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是多少; (2)估算袋中白球的个数,例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.,某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:,(1)计算上表中合格品率的各频率(精确到0.001); (2)估计这种瓷砖的合格品率(精确到0.01); (3)若该厂本月生产该型

5、号瓷砖500000块,试估计合格品数.,(1)逐项计算,填表如下:,(2)观察上表,可以发现,当抽取的瓷砖数n400时,合格品率 稳定在0.962的附近, 所以我们可取p=0.96作为该型号瓷砖的合格品率的估计. (3)50000096%=480000(块),可以估计该型号合格品数为480000块.,频率与概率的关系,联系: 频率 概率,事件发生的频繁程度,事件发生的 可能性大小,在实际问题中,若事件的概率未知,常用频率作为它的估计值.,区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观 存在的,与每次试验无关.,稳定

6、性,大量重复试验,当堂练习,1.下列事件发生的可能性为0的是( )A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟 .今天是星期天,昨天必定是星期六.小明步行的速度是每小时千米,D,2.口袋中有个球,其中个红球,个蓝球,个白球,在下列事件中,发生的可能性为1的是( )A.从口袋中拿一个球恰为红球 B.从口袋中拿出2个球都是白球C.拿出6个球中至少有一个球是红球 D.从口袋中拿出的球恰为3红2白,C,3.小凡做了5次抛掷均匀硬币的实验,其中有3次正面朝上,2次正面朝下,他认为正面朝上的概率大约为 ,朝下的概率为 ,你同意他的观点吗?你认为他再多

7、做一些实验,结果还是这样吗?,答:不同意.概率是针对大量重复试验而言的, 大量重复试验反映的规律并非在每一次试验中 都发生.,4.小明抛掷一枚均匀的硬币,正面朝上的概率为 ,那么,抛掷100次硬币,你能保证恰好50次正面朝上吗?,答:不能,这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.,5.对某批乒乓球的质量进行随机抽查,如下表所示:,(1)完成上表;,0.825,(3)如果重新再抽取1000个乒乓球进行质量检查,对比上表记录下数据,两表的结果会一样吗?为什么?,(2)根据上表,在这批乒乓球中任取一个,它为优等品的概率是多少?,0.8,答:不一定,这是因为频数和频率的随机性.,课堂小结,4.必然事件发生的概率为1;不可能事件发生的概率为0;随机事件A发生的概率P(A)是0与1之间的一个常数.,3.一般的,大量重复的实验中,我们常用随机事件A发生的频率来估计事件A发生的概率.,2.事件A的概率,记为P(A).,1.频率的稳定性.,