1、3 等可能事件的概率,导入新课,讲授新课,当堂练习,课堂小结,第六章 概率初步,第4课时 与面积相关的概率(2)转盘游戏,导入新课,复习引入,概率的计算方法,该事件所占区域的面积 所求事件的概率= 总面积,讲授新课,如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和红色区域的概率分别是多少?,转动如图所示的转盘,当转盘停止时,指针落在红色区域和蓝色区域的概率分别是多少?,想一想,例1 某路口南北方向红绿灯的设置时间为:红灯20秒、绿灯60秒、黄灯3秒.小明的爸爸随机地由南往北开车经过该路口,问: (1)他遇到红灯的概率大还是遇到绿灯的概率大? (2)他遇到红灯的概率是多少
2、?,典例精析,解:(1)小明的爸爸随机地经过该路口,他每一时刻经过的可能性都相同.因为该路口南北方向红绿灯的设置时间为:红灯40s,绿灯60s,黄灯3s.绿灯时间比红灯时间长,所以他遇到绿灯的概率大.,(2)他遇到红灯的概率为:,例2 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.,解:一共有7种等可能的结果. (1)指向红色有3种结果,P(指向红色)=_; (2)指向红色或黄色一共有5种 等可能的
3、结果,P( 指向红或黄)=_; (3)不指向红色有4种等可能的结果P( 不指向红色)= _.,1.如图,把一个圆形转盘按1234的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为_,解析:一个圆形转盘按1234 的比例分成A、B、C、D四个扇形区域, 圆形转盘被等分成10份,其中B区域 占2份,P(落在B区域),当堂练习,2.如图,能自由转动的转盘中, A、B、C、D四个扇形的圆心角的度数分别为180、 30 、 60 、 90 ,转动转盘,当转盘停止时, 指针指向B的概率是_,指向C或D的概率是_.,3.某电视频道播放正片与广告的时间之比为7:1,广告随机穿插在正片之间,小明随机地打开电视机,收看该频道,他开机就能看到正片的概率是多少?,4.如图是一个转盘,扇形1,2,3,4,5所对的圆心角分别是180,90,45,30,15,任意转动转盘,求出指针分别指向1,2,3,4,5的概率(指针恰好指向两扇形交线的概率视为零).,5.如图,转盘被等分成16个扇形,请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为 ,蓝色区域的概率为 , 黄色区域的概率为 吗?,课堂小结,该事件所占区域的面积 1.所求事件的概率= 总面积,2.各种结果出现的可能性务必相同.,