ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:647.50KB ,
资源ID:46563      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-46563.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年春人教版八年级下数学《18.2.3.2正方形的判定》课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年春人教版八年级下数学《18.2.3.2正方形的判定》课件

1、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.3 正方形,第2课时 正方形的判定,1探索并证明正方形的判定,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点) 2会运用正方形的判定条件进行有关的论证和计算 .(难点),问题1 什么是正方形?正方形有哪些性质?,A,B,C,D,正方形:有一组邻边相等,并且有一个角是直角的平行四边形. 正方形性质:四个角都是直角; 四条边都相等;对角线相等且互相垂直平分.,O,导入新课,复习引入,问题2 你是如何判断是矩形、菱形?,平行四边形,矩形,菱形,四边形,三个角是直角,四条边相等,定义,四个判定定理,定义,对角线相等,定

2、义,对角线垂直,思考 怎样判定一个四边形是正方形呢?,讲授新课,活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.,正方形,猜想 满足怎样条件的矩形是正方形?,矩形,正方形,一组邻边相等,对角线互相垂直,已知:如图,在矩形ABCD中,AC , DB是它的两条对角线, ACDB. 求证:四边形ABCD是正方形. 证明:四边形ABCD是矩形, AO=CO=BO=DO ,ADC=90.ACDB, AD=AB=BC=CD,四边形ABCD是正方形.,证一证,A,B,C,D,O,对角线互相垂直的矩形是正方形.,活动2 把可以活动的菱形框架的一个角变为直角,观察这

3、时菱形框架的形状.量量看是不是正方形.,正方形,菱形,猜想 满足怎样条件的菱形是正方形?,正方形,一个角是直角,对角线相等,已知:如图,在菱形ABCD中,AC , DB是它的两条对角线, AC=DB. 求证:四边形ABCD是正方形. 证明:四边形ABCD是菱形, AB=BC=CD=AD,ACDB. AC=DB, AO=BO=CO=DO, AOD,AOB,COD,BOC是等腰直角三角形, DAB=ABC=BCD=ADC=90,四边形ABCD是正方形.,证一证,A,B,C,D,O,对角线相等的菱形是正方形.,正方形判定的几条途径:,正方形,正方形,+,+,先判定菱形,先判定矩形,矩形条件(二选一)

4、,菱形条件(二选一),一个直角,,一组邻边相等,,总结归纳,对角线相等,对角线垂直,在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( ),AAC=BD,ABCD,AB=CD BADBC,A=C CAO=BO=CO=DO,ACBD DAO=CO,BO=DO,AB=BC,练一练,C,A,B,C,D,O,例1 在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN四边形EFMN是正方形吗?为什么?,证明:四边形ABCD是正方形, AB=BC=CD=DA,A=B=C=D=90. AE=BF=CM=DN, AN=BE=CF=DM.,分析:由已知可证AENBFE C

5、MFDNM,得四边形EFMN是菱形,再证有一个角是直角即可.,典例精析,在AEN、BFE、CMF、DNM中,AE=BF=CM=DN,A=B=C=D,AN=BE=CF=DM, AENBFECMFDNM, EN=FE=MF=NM,ANE=BEF, 四边形EFMN是菱形,NEF=180(AEN+BEF)=180(AEN+ANE)=18090=90. 四边形EFMN是正方形 .,证明: DEAC,DFAB , DEC= DFC=90. 又 C=90 , 四边形ADFC是矩形. 过点D作DGAB,垂足为G. AD是CAB的平分线 DEAC,DGAB, DE=DG. 同理得DG=DF, ED=DF, 四边

6、形ADFC是正方形.,例2 如图,在直角三角形中,C=90,A、B的平分线交于点D.DEAC,DFAB.求证:四边形CEDF为正方形.,A,B,C,D,E,F,G,例3 如图,EG,FH过正方形ABCD的对角线的交点O,且EGFH.求证:四边形EFGH是正方形. 证明:四边形ABCD为正方形, OB=OC,ABO=BCO =45, BOC=90=COH+BOH. EGFH, BOE+BOH=90, COH=BOE, CHO BEO,OE=OH. 同理可证:OE=OF=OG,OE=OF=OG=OH. 又EGFH, 四边形EFGH为菱形. EO+GO=FO+HO ,即EG=HF, 四边形EFGH为

7、正方形.,例4 如图,正方形ABCD,动点E在AC上,AFAC,垂足为A,AF=AE (1)求证:BF=DE; (2)当点E运动到AC中点时(其他条件都保持不变), 问四边形AFBE是什么特殊四边形?说明理由,(1)证明:正方形ABCD, AB=AD,BAD=90, AFAC,EAF=90, BAF=EAD, 在ADE和ABF中, ADAB ,DAEBAF ,AEAF , ADEABF(SAS),BF=DE;,(2)解:当点E运动到AC的中点时四边形AFBE是正方形, 理由:点E运动到AC的中点,AB=BC, BEAC,BE=AE= AC, AF=AE, BE=AF=AE. 又BEAC,FAE

8、=BEC=90, BEAF, BE=AF, 得平行四边形AFBE, FAE=90,AF=AE, 四边形AFBE是正方形,思考 前面学菱形时我们探究了顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形各边中点能得到菱形,那么顺次连接正方形各边中点能得到怎样的特殊平行四边形?,矩形,正方形,任意四边形,平行四边形,菱形,正方形,E,F,G,H,E,F,G,H,E,F,G,H,当堂练习,1.下列命题正确的是( )A.四个角都相等的四边形是正方形B.四条边都相等的四边形是正方形C.对角线相等的平行四边形是正方形D.对角线互相垂直的矩形是正方形,D,2.如图,已知四边形ABCD是平行四边形

9、,下列结论中不正确的是( ) A当AB=BC时,四边形ABCD是菱形 B当ACBD时,四边形ABCD是菱形 C当ABC=90时,四边形ABCD是矩形 D当AC=BD时,四边形ABCD是正方形,D,3.如图,四边形ABCD中,ABC=BCD=CDA =90,请添加一个条件_,可得出该四边形是正方形,AB=BC(答案不唯一),A,B,C,D,O,4.已知四边形ABCD是平行四边形,再从AB=BC,ABC=90,AC=BD,ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,其中错误的是_(只填写序号),或,5.如图,在四边形ABCD中, AB=BC ,对角线BD平分ABC , P

10、是BD上一点,过点P作PMAD , PNCD ,垂足分别为M、N.(1) 求证:ADB=CDB;(2) 若ADC=90,求证:四边形MPND是正方形.,证明:(1)AB = BC,BD平分ABC.1=2.ABDCBD (SAS).ADB=CDB.,1,2,(2)ADC=90;又PMAD,PNCD;PMD=PND=90.四边形NPMD是矩形. ADB=CDB;ADB=CDB=45.MPD=NPD=45.DM=PM,DN=PN.四边形NPMD是正方形.,6.如图,ABC中,D是BC上任意一点,DEAC,DFAB (1)试说明四边形AEDF的形状,并说明理由 (2)连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?,解:(1)DEAC,DFAB, 四边形AEDF为平行四边形. (2)四边形AEDF为菱形, AD平分BAC, 则AD平分BAC时,四边形AEDF为菱形.,(3)在(2)的条件下,当ABC满足什么条件时,四边形AEDF为正方形,不说明理由,解:由四边形AEDF为正方形 BAC=90, ABC是以BC为斜边的直角三角形即可,课堂小结,5种判定方法,三个角是直角,四条边相等,一个角是直角,或对角线相等,一组邻边相等,或对角线垂直,一组邻边相等,或对角线垂直,一个角是直角,或对角线相等,一个角是直角且一组邻边相等,平行四边形、矩形、菱形、正方形的判定小结,