ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:404.50KB ,
资源ID:39781      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-39781.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.3用公式法求解一元二次方程(第1课时)课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2.3用公式法求解一元二次方程(第1课时)课件

1、2.3 用公式法求解一元二次方程,第二章 一元二次方程,第1课时 用公式法求解一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解一元二次方程求根公式的推导过程. 2.会用公式法解一元二次方程.(重点) 3.会用根的判别式b2- 4ac判断一元二次方程根的情况及相关应用(难点),问题:说一说用配方法解系数不为1的一元二次方程的步骤?,基本步骤如下: 将二次项系数化为1. 将常数项移到方程的右边,是左边只有二次项和一次项. 两边都加上一次项系数一半的平方. 直接用开平方法求出它的解.,导入新课,做一做:你能用配方法解方程 ax2 + bx +c = 0(a0) 吗?,解:二次

2、项系数化为1,得 x2 + x + = 0 . 配方,得 x2 + x +( )2 -( )2 - = 0, 移项,得 (x + )2 =,问题1:接下来能用直接开平方解吗?,讲授新课,问题2:什么情况下可以直接开平方?什么情况下不能直接开?,(x + )2 0 , 4a2 0 . 当 b2- 4ac 0 时,不能开方(负数没有平方根). 当 b2 4ac 0 时,左右两边都是非负数.可以开方,得x + = x =,这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做公式法.,对于一元二次方程 ax2 + bx +c = 0(a0) , 当 b2- 4ac 0时,,这个公式

3、说明方程的根是由方程的系数a、b、c所确定的,利用这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方程的解.,例1:解方程(1)x2 - 7x 18 = 0.解:这里 a =1 , b =-7 , c = -18. b2 - 4ac = (-7 )2 - 41(-18 )=121 0,即 x1 = 9 x2 = -2.,典例精析,(2)4x2 + 1 = 4x解:将原方程化为一般形式,得4x2 -4x + 1 = 0 .这里a = 4 , b = -4, c = 1. b2 - 4ac = ( -4 )2 - 441 = 0 ,即 x1 = x2 =,例2 解方程:4x2-3x+

4、2=0,因为在实数范围内负数不能开平方,所以方程无实数根.,解:,要点归纳,公式法解方程的步骤,1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数;3.计算: b2-4ac的值; 4.判断:若b2-4ac 0,则利用求根公式求出;若b2-4ac 0时,方程有两个不相等的实数根. b2 - 4ac = 0时,方程有两个相等的实数根. b2 - 4ac 0 ,有两个不相等的实数根.(2) = (-1 )2 422= -15 0,即 x1 = -9, x2 = 2 .,当堂练习,2. 解方程(x - 2) (1 - 3x) = 6.,解:去括号 ,得 x 2 - 3x2 +

5、6x = 6,化简为一般式 3x2 - 7x + 8 = 0,这里 a = 3, b = -7 , c = 8.b2 - 4ac=(-7 )2 4 3 8 = 4996 = - 47 0 ,即 x1= x2=,4.不解方程,判别方程5y2+1=8y的根的情况.,解:化为一般形式为:5y2-8y+1=0.,所以=b24ac=(5)2-4(-8)1=570.,所以方程5y2+1=8y的有两个不相等的实数根.,这里a=5,b=-8,c=1,,能力提升:在等腰ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求ABC 的周长.,解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,,所以=b24ac=(b-2)2-4(6-b)=b2+8b-20=0.,所以b=-10或b=2.,将b=-10代入原方程得x2-8x+16=0,x1=x2=4;,将b=2代入原方程得x2+4x+4=0,x1=x2=-2(不符题设,舍去);,所以ABC 的三边长为4,4,5,其周长为4+4+5=13.,课堂小结,公式法,求根公式,步骤,一化(一般形式); 二定(系数值); 三求( 值);四判(方程根的情况); 五代(求根公式计算).,根的判别式b2-4ac,务必将方程化为一般形式,